board.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273
  1. /*
  2. * Copyright (c) 2021-2024 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_pwm_drv.h"
  21. #include "hpm_trgm_drv.h"
  22. #include "hpm_pllctl_drv.h"
  23. #include "hpm_enet_drv.h"
  24. #include "hpm_pcfg_drv.h"
  25. #include <rtconfig.h>
  26. #if defined(ENET_MULTIPLE_PORT) && ENET_MULTIPLE_PORT
  27. #include "hpm_enet_phy_common.h"
  28. #endif
  29. /**
  30. * @brief FLASH configuration option definitions:
  31. * option[0]:
  32. * [31:16] 0xfcf9 - FLASH configuration option tag
  33. * [15:4] 0 - Reserved
  34. * [3:0] option words (exclude option[0])
  35. * option[1]:
  36. * [31:28] Flash probe type
  37. * 0 - SFDP SDR / 1 - SFDP DDR
  38. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  39. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  40. * 6 - OctaBus DDR (SPI -> OPI DDR)
  41. * 8 - Xccela DDR (SPI -> OPI DDR)
  42. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  43. * [27:24] Command Pads after Power-on Reset
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [23:20] Command Pads after Configuring FLASH
  46. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  47. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  48. * 0 - Not needed
  49. * 1 - QE bit is at bit 6 in Status Register 1
  50. * 2 - QE bit is at bit1 in Status Register 2
  51. * 3 - QE bit is at bit7 in Status Register 2
  52. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  53. * [15:8] Dummy cycles
  54. * 0 - Auto-probed / detected / default value
  55. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  56. * [7:4] Misc.
  57. * 0 - Not used
  58. * 1 - SPI mode
  59. * 2 - Internal loopback
  60. * 3 - External DQS
  61. * [3:0] Frequency option
  62. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  63. *
  64. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  65. * [31:20] Reserved
  66. * [19:16] IO voltage
  67. * 0 - 3V / 1 - 1.8V
  68. * [15:12] Pin group
  69. * 0 - 1st group / 1 - 2nd group
  70. * [11:8] Connection selection
  71. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  72. * [7:0] Drive Strength
  73. * 0 - Default value
  74. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  75. * JESD216)
  76. * [31:16] reserved
  77. * [15:12] Sector Erase Command Option, not required here
  78. * [11:8] Sector Size Option, not required here
  79. * [7:0] Flash Size Option
  80. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  81. */
  82. #if defined(FLASH_XIP) && FLASH_XIP
  83. __attribute__ ((section(".nor_cfg_option"), used)) const uint32_t option[4] = {0xfcf90002, 0x00000007, 0xE, 0x0};
  84. #endif
  85. #if defined(FLASH_UF2) && FLASH_UF2
  86. ATTR_PLACE_AT(".uf2_signature") __attribute__((used)) const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  87. #endif
  88. void board_init_console(void)
  89. {
  90. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  91. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  92. console_config_t cfg;
  93. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  94. uart rx pin when configuring pin function will cause a wrong data to be received.
  95. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  96. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  97. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  98. cfg.type = BOARD_CONSOLE_TYPE;
  99. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  100. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  101. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  102. if (status_success != console_init(&cfg)) {
  103. /* failed to initialize debug console */
  104. while (1) {
  105. }
  106. }
  107. #else
  108. while (1) {
  109. }
  110. #endif
  111. #endif
  112. }
  113. void board_print_clock_freq(void)
  114. {
  115. printf("==============================\n");
  116. printf(" %s clock summary\n", BOARD_NAME);
  117. printf("==============================\n");
  118. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  119. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  120. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  121. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  122. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  123. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  124. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  125. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  126. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  127. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  128. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  129. printf("==============================\n");
  130. }
  131. void board_init_uart(UART_Type *ptr)
  132. {
  133. /* configure uart's pin before opening uart's clock */
  134. init_uart_pins(ptr);
  135. board_init_uart_clock(ptr);
  136. }
  137. void board_print_banner(void)
  138. {
  139. const uint8_t banner[] = {"\n\
  140. ----------------------------------------------------------------------\n\
  141. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  142. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  143. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  144. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  145. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  146. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  147. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  148. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  149. ----------------------------------------------------------------------\n"};
  150. #ifdef SDK_VERSION_STRING
  151. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  152. #endif
  153. printf("%s", banner);
  154. }
  155. static void board_turnoff_rgb_led(void)
  156. {
  157. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(BOARD_LED_OFF_LEVEL);
  158. HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
  159. HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
  160. HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
  161. HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
  162. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
  163. HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
  164. }
  165. void board_ungate_mchtmr_at_lp_mode(void)
  166. {
  167. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  168. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  169. }
  170. void board_init(void)
  171. {
  172. board_turnoff_rgb_led();
  173. board_init_clock();
  174. board_init_console();
  175. board_init_pmp();
  176. #if BOARD_SHOW_CLOCK
  177. board_print_clock_freq();
  178. #endif
  179. #if BOARD_SHOW_BANNER
  180. board_print_banner();
  181. #endif
  182. }
  183. void board_init_core1(void)
  184. {
  185. clock_update_core_clock();
  186. board_init_console();
  187. board_init_pmp();
  188. }
  189. void board_init_sdram_pins(void)
  190. {
  191. init_femc_pins();
  192. }
  193. uint32_t board_init_femc_clock(void)
  194. {
  195. clock_add_to_group(clock_femc, 0);
  196. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  197. return clock_get_frequency(clock_femc);
  198. }
  199. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
  200. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  201. static void set_reset_pin_level_tm070rdh13(uint8_t level)
  202. {
  203. gpio_write_pin(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN, level);
  204. }
  205. static void set_backlight_tm070rdh13(uint16_t percent)
  206. {
  207. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
  208. }
  209. void board_init_lcd_rgb_tm070rdh13(void)
  210. {
  211. init_lcd_pins(BOARD_LCD_BASE);
  212. gpio_set_pin_output(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN);
  213. gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 0);
  214. gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 1);
  215. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  216. gpio_set_pin_output(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN);
  217. hpm_panel_hw_interface_t hw_if = {0};
  218. hpm_panel_t *panel = hpm_panel_find_device_default();
  219. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  220. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
  221. hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
  222. hw_if.set_backlight = set_backlight_tm070rdh13;
  223. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  224. hpm_panel_register_interface(panel, &hw_if);
  225. printf("name: %s, lcdc_clk: %ukhz\n",
  226. hpm_panel_get_name(panel),
  227. lcdc_pixel_clk_khz);
  228. hpm_panel_reset(panel);
  229. hpm_panel_init(panel);
  230. hpm_panel_power_on(panel);
  231. }
  232. #endif
  233. #ifdef CONFIG_HPM_PANEL
  234. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
  235. {
  236. clock_add_to_group(clock_name, 0);
  237. uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
  238. uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
  239. clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
  240. return clock_get_frequency(clock_name) / 1000;
  241. }
  242. void board_lcd_backlight(bool is_on)
  243. {
  244. hpm_panel_t *panel = hpm_panel_find_device_default();
  245. hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
  246. }
  247. void board_init_lcd(void)
  248. {
  249. #ifdef CONFIG_PANEL_RGB_TM070RDH13
  250. board_init_lcd_rgb_tm070rdh13();
  251. #endif
  252. }
  253. void board_panel_para_to_lcdc(lcdc_config_t *config)
  254. {
  255. const hpm_panel_timing_t *timing;
  256. hpm_panel_t *panel = hpm_panel_find_device_default();
  257. timing = hpm_panel_get_timing(panel);
  258. config->resolution_x = timing->hactive;
  259. config->resolution_y = timing->vactive;
  260. config->hsync.pulse_width = timing->hsync_len;
  261. config->hsync.back_porch_pulse = timing->hback_porch;
  262. config->hsync.front_porch_pulse = timing->hfront_porch;
  263. config->vsync.pulse_width = timing->vsync_len;
  264. config->vsync.back_porch_pulse = timing->vback_porch;
  265. config->vsync.front_porch_pulse = timing->vfront_porch;
  266. config->control.invert_hsync = timing->hsync_pol;
  267. config->control.invert_vsync = timing->vsync_pol;
  268. config->control.invert_href = timing->de_pol;
  269. config->control.invert_pixel_data = timing->pixel_data_pol;
  270. config->control.invert_pixel_clock = timing->pixel_clk_pol;
  271. }
  272. #endif
  273. void board_delay_ms(uint32_t ms)
  274. {
  275. clock_cpu_delay_ms(ms);
  276. }
  277. void board_delay_us(uint32_t us)
  278. {
  279. clock_cpu_delay_us(us);
  280. }
  281. #if !defined(NO_BOARD_TIMER_SUPPORT) || !NO_BOARD_TIMER_SUPPORT
  282. static board_timer_cb timer_cb;
  283. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr)
  284. void board_timer_isr(void)
  285. {
  286. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  287. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  288. timer_cb();
  289. }
  290. }
  291. void board_timer_create(uint32_t ms, board_timer_cb cb)
  292. {
  293. uint32_t gptmr_freq;
  294. gptmr_channel_config_t config;
  295. timer_cb = cb;
  296. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  297. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  298. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  299. config.reload = gptmr_freq / 1000 * ms;
  300. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  301. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  302. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  303. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  304. }
  305. #endif
  306. void board_i2c_bus_clear(I2C_Type *ptr)
  307. {
  308. init_i2c_pins_as_gpio(ptr);
  309. if (ptr == BOARD_CAP_I2C_BASE) {
  310. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  311. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  312. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  313. printf("CLK is low, please power cycle the board\n");
  314. while (1) {
  315. }
  316. }
  317. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  318. printf("SDA is low, try to issue I2C bus clear\n");
  319. } else {
  320. printf("I2C bus is ready\n");
  321. return;
  322. }
  323. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  324. while (1) {
  325. for (uint32_t i = 0; i < 9; i++) {
  326. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  327. board_delay_ms(10);
  328. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  329. board_delay_ms(10);
  330. }
  331. board_delay_ms(100);
  332. }
  333. printf("I2C bus is cleared\n");
  334. }
  335. }
  336. uint32_t board_init_i2c_clock(I2C_Type *ptr)
  337. {
  338. uint32_t freq = 0;
  339. if (ptr == HPM_I2C0) {
  340. clock_add_to_group(clock_i2c0, 0);
  341. freq = clock_get_frequency(clock_i2c0);
  342. } else if (ptr == HPM_I2C1) {
  343. clock_add_to_group(clock_i2c1, 0);
  344. freq = clock_get_frequency(clock_i2c1);
  345. } else if (ptr == HPM_I2C2) {
  346. clock_add_to_group(clock_i2c2, 0);
  347. freq = clock_get_frequency(clock_i2c2);
  348. } else if (ptr == HPM_I2C3) {
  349. clock_add_to_group(clock_i2c3, 0);
  350. freq = clock_get_frequency(clock_i2c3);
  351. } else {
  352. ;
  353. }
  354. return freq;
  355. }
  356. void board_init_i2c(I2C_Type *ptr)
  357. {
  358. i2c_config_t config;
  359. hpm_stat_t stat;
  360. uint32_t freq;
  361. freq = board_init_i2c_clock(ptr);
  362. board_i2c_bus_clear(ptr);
  363. init_i2c_pins(ptr);
  364. config.i2c_mode = i2c_mode_normal;
  365. config.is_10bit_addressing = false;
  366. stat = i2c_init_master(ptr, freq, &config);
  367. if (stat != status_success) {
  368. printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
  369. while (1) {
  370. }
  371. }
  372. }
  373. uint32_t board_init_uart_clock(UART_Type *ptr)
  374. {
  375. uint32_t freq = 0U;
  376. if (ptr == HPM_UART0) {
  377. clock_add_to_group(clock_uart0, 0);
  378. freq = clock_get_frequency(clock_uart0);
  379. } else if (ptr == HPM_UART6) {
  380. clock_add_to_group(clock_uart6, 0);
  381. freq = clock_get_frequency(clock_uart6);
  382. } else if (ptr == HPM_UART13) {
  383. clock_add_to_group(clock_uart13, 0);
  384. freq = clock_get_frequency(clock_uart13);
  385. } else if (ptr == HPM_UART14) {
  386. clock_add_to_group(clock_uart14, 0);
  387. freq = clock_get_frequency(clock_uart14);
  388. } else {
  389. /* Not supported */
  390. }
  391. return freq;
  392. }
  393. uint32_t board_init_spi_clock(SPI_Type *ptr)
  394. {
  395. if (ptr == HPM_SPI2) {
  396. clock_add_to_group(clock_spi2, 0);
  397. return clock_get_frequency(clock_spi2);
  398. }
  399. return 0;
  400. }
  401. void board_init_cap_touch(void)
  402. {
  403. init_cap_pins();
  404. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  405. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  406. board_delay_ms(1);
  407. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
  408. board_delay_ms(10);
  409. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  410. gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  411. board_init_i2c(BOARD_CAP_I2C_BASE);
  412. }
  413. void board_init_gpio_pins(void)
  414. {
  415. init_gpio_pins();
  416. }
  417. void board_init_spi_pins(SPI_Type *ptr)
  418. {
  419. init_spi_pins(ptr);
  420. }
  421. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  422. {
  423. init_spi_pins_with_gpio_as_cs(ptr);
  424. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  425. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  426. }
  427. void board_write_spi_cs(uint32_t pin, uint8_t state)
  428. {
  429. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  430. }
  431. uint8_t board_get_led_pwm_off_level(void)
  432. {
  433. return BOARD_LED_OFF_LEVEL;
  434. }
  435. uint8_t board_get_led_gpio_off_level(void)
  436. {
  437. return BOARD_LED_OFF_LEVEL;
  438. }
  439. void board_init_led_pins(void)
  440. {
  441. board_turnoff_rgb_led();
  442. init_led_pins_as_gpio();
  443. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  444. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  445. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  446. }
  447. void board_led_toggle(void)
  448. {
  449. #ifdef BOARD_LED_TOGGLE_RGB
  450. static uint8_t i;
  451. gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, (7 & (1 << i)) << BOARD_R_GPIO_PIN);
  452. i++;
  453. i = i % 3;
  454. #else
  455. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  456. #endif
  457. }
  458. void board_led_write(uint8_t state)
  459. {
  460. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  461. }
  462. void board_init_cam_pins(void)
  463. {
  464. init_cam_pins();
  465. /* enable cam RST pin out with high level */
  466. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  467. }
  468. void board_write_cam_rst(uint8_t state)
  469. {
  470. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  471. }
  472. void board_init_usb(USB_Type *ptr)
  473. {
  474. clock_name_t usb_clk = (ptr == HPM_USB0) ? clock_usb0 : clock_usb1;
  475. init_usb_pins(ptr);
  476. clock_add_to_group(usb_clk, 0);
  477. }
  478. void board_init_pmp(void)
  479. {
  480. uint32_t start_addr;
  481. uint32_t end_addr;
  482. uint32_t length;
  483. pmp_entry_t pmp_entry[16];
  484. uint8_t index = 0;
  485. /* Init noncachable memory */
  486. extern uint32_t __noncacheable_start__[];
  487. extern uint32_t __noncacheable_end__[];
  488. start_addr = (uint32_t) __noncacheable_start__;
  489. end_addr = (uint32_t) __noncacheable_end__;
  490. length = end_addr - start_addr;
  491. if (length > 0) {
  492. /* Ensure the address and the length are power of 2 aligned */
  493. assert((length & (length - 1U)) == 0U);
  494. assert((start_addr & (length - 1U)) == 0U);
  495. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  496. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  497. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  498. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  499. index++;
  500. }
  501. pmp_config(&pmp_entry[0], index);
  502. }
  503. void board_init_clock(void)
  504. {
  505. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  506. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  507. /* Configure the External OSC ramp-up time: ~9ms */
  508. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  509. /* Select clock setting preset1 */
  510. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  511. }
  512. /* Add clocks to group 0 */
  513. clock_add_to_group(clock_cpu0, 0);
  514. clock_add_to_group(clock_mchtmr0, 0);
  515. clock_add_to_group(clock_axi0, 0);
  516. clock_add_to_group(clock_axi1, 0);
  517. clock_add_to_group(clock_axi2, 0);
  518. clock_add_to_group(clock_ahb, 0);
  519. clock_add_to_group(clock_xdma, 0);
  520. clock_add_to_group(clock_hdma, 0);
  521. clock_add_to_group(clock_xpi0, 0);
  522. clock_add_to_group(clock_xpi1, 0);
  523. clock_add_to_group(clock_ram0, 0);
  524. clock_add_to_group(clock_ram1, 0);
  525. clock_add_to_group(clock_lmm0, 0);
  526. clock_add_to_group(clock_lmm1, 0);
  527. clock_add_to_group(clock_gpio, 0);
  528. clock_add_to_group(clock_mot0, 0);
  529. clock_add_to_group(clock_mot1, 0);
  530. clock_add_to_group(clock_mot2, 0);
  531. clock_add_to_group(clock_mot3, 0);
  532. clock_add_to_group(clock_synt, 0);
  533. clock_add_to_group(clock_ptpc, 0);
  534. /* Connect Group0 to CPU0 */
  535. clock_connect_group_to_cpu(0, 0);
  536. /* Add clocks to Group1 */
  537. clock_add_to_group(clock_cpu1, 1);
  538. clock_add_to_group(clock_mchtmr1, 1);
  539. /* Connect Group1 to CPU1 */
  540. clock_connect_group_to_cpu(1, 1);
  541. /* Bump up DCDC voltage to 1275mv */
  542. pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
  543. pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
  544. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  545. printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
  546. while (1) {
  547. }
  548. }
  549. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  550. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  551. clock_update_core_clock();
  552. clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
  553. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  554. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  555. }
  556. uint32_t board_init_cam_clock(CAM_Type *ptr)
  557. {
  558. uint32_t freq = 0;
  559. if (ptr == HPM_CAM0) {
  560. /* Configure camera clock to 24MHz */
  561. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  562. clock_add_to_group(clock_camera0, 0);
  563. freq = clock_get_frequency(clock_camera0);
  564. } else if (ptr == HPM_CAM1) {
  565. /* Configure camera clock to 24MHz */
  566. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  567. clock_add_to_group(clock_camera1, 0);
  568. freq = clock_get_frequency(clock_camera1);
  569. } else {
  570. /* Invalid camera instance */
  571. }
  572. return freq;
  573. }
  574. uint32_t board_init_dao_clock(void)
  575. {
  576. clock_add_to_group(clock_dao, 0);
  577. board_config_i2s_clock(DAO_I2S, 48000);
  578. return clock_get_frequency(clock_dao);
  579. }
  580. uint32_t board_init_pdm_clock(void)
  581. {
  582. clock_add_to_group(clock_pdm, 0);
  583. board_config_i2s_clock(PDM_I2S, 16000);
  584. return clock_get_frequency(clock_pdm);
  585. }
  586. hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
  587. {
  588. return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq); /* pll3clk */
  589. }
  590. void board_init_i2s_pins(I2S_Type *ptr)
  591. {
  592. init_i2s_pins(ptr);
  593. }
  594. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  595. {
  596. uint32_t freq = 0;
  597. if (ptr == HPM_I2S0) {
  598. clock_add_to_group(clock_i2s0, 0);
  599. if ((sample_rate % 22050) == 0) {
  600. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  601. } else {
  602. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  603. }
  604. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  605. freq = clock_get_frequency(clock_i2s0);
  606. } else if (ptr == HPM_I2S1) {
  607. clock_add_to_group(clock_i2s1, 0);
  608. if ((sample_rate % 22050) == 0) {
  609. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  610. } else {
  611. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  612. }
  613. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  614. freq = clock_get_frequency(clock_i2s1);
  615. } else {
  616. ;
  617. }
  618. return freq;
  619. }
  620. void board_init_adc12_pins(void)
  621. {
  622. init_adc12_pins();
  623. }
  624. void board_init_adc16_pins(void)
  625. {
  626. init_adc16_pins();
  627. }
  628. uint32_t board_init_adc_clock(void *ptr, bool clk_src_bus)
  629. {
  630. uint32_t freq = 0;
  631. if (ptr == (void *)HPM_ADC0) {
  632. if (clk_src_bus) {
  633. /* Configure the ADC clock from AHB (@200MHz by default)*/
  634. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  635. } else {
  636. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  637. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  638. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  639. }
  640. clock_add_to_group(clock_adc0, 0);
  641. freq = clock_get_frequency(clock_adc0);
  642. } else if (ptr == (void *)HPM_ADC1) {
  643. if (clk_src_bus) {
  644. /* Configure the ADC clock from AHB (@200MHz by default)*/
  645. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  646. } else {
  647. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  648. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  649. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  650. }
  651. clock_add_to_group(clock_adc1, 0);
  652. freq = clock_get_frequency(clock_adc1);
  653. } else if (ptr == (void *)HPM_ADC2) {
  654. if (clk_src_bus) {
  655. /* Configure the ADC clock from AHB (@200MHz by default)*/
  656. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  657. } else {
  658. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  659. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  660. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  661. }
  662. clock_add_to_group(clock_adc2, 0);
  663. freq = clock_get_frequency(clock_adc2);
  664. } else if (ptr == (void *)HPM_ADC3) {
  665. if (clk_src_bus) {
  666. /* Configure the ADC clock from AHB (@200MHz by default)*/
  667. clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
  668. } else {
  669. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  670. clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
  671. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  672. }
  673. clock_add_to_group(clock_adc3, 0);
  674. freq = clock_get_frequency(clock_adc3);
  675. }
  676. return freq;
  677. }
  678. void board_init_acmp_pins(void)
  679. {
  680. init_acmp_pins();
  681. }
  682. void board_init_acmp_clock(ACMP_Type *ptr)
  683. {
  684. (void)ptr;
  685. clock_add_to_group(BOARD_ACMP_CLK, BOARD_RUNNING_CORE & 0x1);
  686. }
  687. void board_init_can(CAN_Type *ptr)
  688. {
  689. init_can_pins(ptr);
  690. }
  691. uint32_t board_init_can_clock(CAN_Type *ptr)
  692. {
  693. uint32_t freq = 0;
  694. if (ptr == HPM_CAN0) {
  695. /* Set the CAN0 peripheral clock to 80MHz */
  696. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  697. clock_add_to_group(clock_can0, 0);
  698. freq = clock_get_frequency(clock_can0);
  699. } else if (ptr == HPM_CAN1) {
  700. /* Set the CAN1 peripheral clock to 80MHz */
  701. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  702. clock_add_to_group(clock_can1, 0);
  703. freq = clock_get_frequency(clock_can1);
  704. } else if (ptr == HPM_CAN2) {
  705. /* Set the CAN2 peripheral clock to 80MHz */
  706. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  707. clock_add_to_group(clock_can2, 0);
  708. freq = clock_get_frequency(clock_can2);
  709. } else if (ptr == HPM_CAN3) {
  710. /* Set the CAN3 peripheral clock to 80MHz */
  711. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  712. clock_add_to_group(clock_can3, 0);
  713. freq = clock_get_frequency(clock_can3);
  714. } else {
  715. /* Invalid CAN instance */
  716. }
  717. return freq;
  718. }
  719. #ifdef INIT_EXT_RAM_FOR_DATA
  720. /*
  721. * this function will be called during startup to initialize external memory for data use
  722. */
  723. void _init_ext_ram(void)
  724. {
  725. uint32_t femc_clk_in_hz;
  726. femc_config_t config = {0};
  727. femc_sdram_config_t sdram_config = {0};
  728. board_init_sdram_pins();
  729. femc_clk_in_hz = board_init_femc_clock();
  730. femc_default_config(HPM_FEMC, &config);
  731. femc_init(HPM_FEMC, &config);
  732. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  733. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  734. sdram_config.prescaler = 0x3;
  735. sdram_config.burst_len_in_byte = 8;
  736. sdram_config.auto_refresh_count_in_one_burst = 1;
  737. sdram_config.col_addr_bits = BOARD_SDRAM_COLUMN_ADDR_BITS;
  738. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  739. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  740. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  741. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  742. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  743. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  744. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  745. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  746. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  747. sdram_config.cs = BOARD_SDRAM_CS;
  748. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  749. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  750. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  751. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  752. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  753. sdram_config.delay_cell_disable = true;
  754. sdram_config.delay_cell_value = 0;
  755. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  756. }
  757. #endif
  758. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  759. {
  760. uint32_t actual_freq = 0;
  761. do {
  762. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  763. clock_add_to_group(sdxc_clk, 0);
  764. sdxc_enable_inverse_clock(ptr, false);
  765. sdxc_enable_sd_clock(ptr, false);
  766. /* Configure the clock below 400KHz for the identification state */
  767. if (freq <= 400000UL) {
  768. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  769. }
  770. /* configure the clock to 24MHz for the SDR12/Default speed */
  771. else if (freq <= 26000000UL) {
  772. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  773. }
  774. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  775. else if (freq <= 52000000UL) {
  776. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  777. }
  778. /* Configure the clock to 100MHz for the SDR50 */
  779. else if (freq <= 100000000UL) {
  780. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  781. }
  782. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  783. else if (freq <= 208000000UL) {
  784. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  785. }
  786. /* For other unsupported clock ranges, configure the clock to 24MHz */
  787. else {
  788. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  789. }
  790. if (need_inverse) {
  791. sdxc_enable_inverse_clock(ptr, true);
  792. }
  793. hpm_stat_t status = clock_wait_source_stable(sdxc_clk);
  794. if (status != status_success) {
  795. break;
  796. }
  797. sdxc_enable_sd_clock(ptr, true);
  798. actual_freq = clock_get_frequency(sdxc_clk);
  799. } while (false);
  800. return actual_freq;
  801. }
  802. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  803. {
  804. pwm_cmp_config_t cmp_config = {0};
  805. pwm_output_channel_t ch_config = {0};
  806. pwm_stop_counter(ptr);
  807. pwm_get_default_cmp_config(ptr, &cmp_config);
  808. pwm_get_default_output_channel_config(ptr, &ch_config);
  809. pwm_set_reload(ptr, 0, 0xF);
  810. pwm_set_start_count(ptr, 0, 0);
  811. cmp_config.mode = pwm_cmp_mode_output_compare;
  812. cmp_config.cmp = 0x10;
  813. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  814. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  815. ch_config.cmp_start_index = cmp_index;
  816. ch_config.cmp_end_index = cmp_index;
  817. ch_config.invert_output = false;
  818. pwm_config_output_channel(ptr, pin, &ch_config);
  819. }
  820. void board_init_rgb_pwm_pins(void)
  821. {
  822. trgm_output_t config = {0};
  823. board_turnoff_rgb_led();
  824. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  825. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  826. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  827. init_rgb_pwm_pins();
  828. config.type = 0;
  829. config.invert = false;
  830. /* Red: TRGM1 P1 */
  831. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
  832. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
  833. /* Green: TRGM0 P6 */
  834. config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
  835. trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
  836. /* Blue: TRGM1 P3 */
  837. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
  838. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
  839. }
  840. void board_disable_output_rgb_led(uint8_t color)
  841. {
  842. switch (color) {
  843. case BOARD_RGB_RED:
  844. trgm_disable_io_output(HPM_TRGM1, 1 << 1);
  845. break;
  846. case BOARD_RGB_GREEN:
  847. trgm_disable_io_output(HPM_TRGM0, 1 << 6);
  848. break;
  849. case BOARD_RGB_BLUE:
  850. trgm_disable_io_output(HPM_TRGM1, 1 << 3);
  851. break;
  852. default:
  853. while (1) {
  854. ;
  855. }
  856. }
  857. }
  858. void board_enable_output_rgb_led(uint8_t color)
  859. {
  860. switch (color) {
  861. case BOARD_RGB_RED:
  862. trgm_enable_io_output(HPM_TRGM1, 1 << 1);
  863. break;
  864. case BOARD_RGB_GREEN:
  865. trgm_enable_io_output(HPM_TRGM0, 1 << 6);
  866. break;
  867. case BOARD_RGB_BLUE:
  868. trgm_enable_io_output(HPM_TRGM1, 1 << 3);
  869. break;
  870. default:
  871. while (1) {
  872. ;
  873. }
  874. }
  875. }
  876. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  877. {
  878. /* set clock source */
  879. if (ptr == HPM_ENET0) {
  880. clock_add_to_group(clock_ptp0, BOARD_RUNNING_CORE & 0x1);
  881. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  882. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  883. } else if (ptr == HPM_ENET1) {
  884. clock_add_to_group(clock_ptp1, BOARD_RUNNING_CORE & 0x1);
  885. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  886. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  887. } else {
  888. return status_invalid_argument;
  889. }
  890. return status_success;
  891. }
  892. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  893. {
  894. clock_name_t eth_clk = (ptr == HPM_ENET0) ? clock_eth0 : clock_eth1;
  895. /* Configure Enet clock to output reference clock */
  896. clock_add_to_group(eth_clk, BOARD_RUNNING_CORE & 0x1);
  897. if (internal) {
  898. /* set pll output frequency at 1GHz */
  899. if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
  900. /* set pll2_clk1 output frequency at 250MHz from PLL2 divided by 4 */
  901. pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
  902. /* set eth clock frequency at 50MHz for enet0 */
  903. clock_set_source_divider(eth_clk, clk_src_pll2_clk1, 5);
  904. } else {
  905. return status_fail;
  906. }
  907. }
  908. enet_rmii_enable_clock(ptr, internal);
  909. return status_success;
  910. }
  911. hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
  912. {
  913. if (ptr == HPM_ENET0) {
  914. clock_add_to_group(clock_eth0, BOARD_RUNNING_CORE & 0x1);
  915. return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
  916. }
  917. return status_invalid_argument;
  918. }
  919. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  920. {
  921. init_enet_pins(ptr);
  922. if (ptr == HPM_ENET0) {
  923. gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  924. } else if (ptr == HPM_ENET1) {
  925. gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  926. } else {
  927. return status_invalid_argument;
  928. }
  929. return status_success;
  930. }
  931. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  932. {
  933. if (ptr == HPM_ENET0) {
  934. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  935. board_delay_ms(1);
  936. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
  937. } else if (ptr == HPM_ENET1) {
  938. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  939. board_delay_ms(1);
  940. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
  941. } else {
  942. return status_invalid_argument;
  943. }
  944. return status_success;
  945. }
  946. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  947. {
  948. (void) ptr;
  949. return enet_pbl_32;
  950. }
  951. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  952. {
  953. if (ptr == HPM_ENET0) {
  954. intc_m_enable_irq(IRQn_ENET0);
  955. } else if (ptr == HPM_ENET1) {
  956. intc_m_enable_irq(IRQn_ENET1);
  957. } else {
  958. return status_invalid_argument;
  959. }
  960. return status_success;
  961. }
  962. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  963. {
  964. if (ptr == HPM_ENET0) {
  965. intc_m_disable_irq(IRQn_ENET0);
  966. } else if (ptr == HPM_ENET1) {
  967. intc_m_disable_irq(IRQn_ENET1);
  968. } else {
  969. return status_invalid_argument;
  970. }
  971. return status_success;
  972. }
  973. void board_init_enet_pps_pins(ENET_Type *ptr)
  974. {
  975. (void) ptr;
  976. init_enet_pps_pins();
  977. }
  978. void board_init_enet_pps_capture_pins(ENET_Type *ptr)
  979. {
  980. (void) ptr;
  981. init_enet_pps_capture_pins();
  982. }
  983. #if defined(ENET_MULTIPLE_PORT) && ENET_MULTIPLE_PORT
  984. hpm_stat_t board_init_multiple_enet_pins(void)
  985. {
  986. board_init_enet_pins(HPM_ENET0);
  987. board_init_enet_pins(HPM_ENET1);
  988. return status_success;
  989. }
  990. hpm_stat_t board_init_multiple_enet_clock(void)
  991. {
  992. /* Set RGMII clock delay */
  993. board_init_enet_rgmii_clock_delay(HPM_ENET0);
  994. /* Set RMII reference clock */
  995. board_init_enet_rmii_reference_clock(HPM_ENET1, BOARD_ENET_RMII_INT_REF_CLK);
  996. printf("Enet1 Reference Clock: %s\n", BOARD_ENET_RMII_INT_REF_CLK ? "Internal Clock" : "External Clock");
  997. return status_success;
  998. }
  999. hpm_stat_t board_reset_multiple_enet_phy(void)
  1000. {
  1001. board_reset_enet_phy(HPM_ENET0);
  1002. board_reset_enet_phy(HPM_ENET1);
  1003. return status_success;
  1004. }
  1005. hpm_stat_t board_init_enet_phy(ENET_Type *ptr)
  1006. {
  1007. dp83867_config_t phy_config0;
  1008. dp83848_config_t phy_config1;
  1009. if (ptr == HPM_ENET0) {
  1010. dp83867_reset(HPM_ENET0);
  1011. #if defined(__DISABLE_AUTO_NEGO) && __DISABLE_AUTO_NEGO
  1012. dp83867_set_mdi_crossover_mode(HPM_ENET0, enet_phy_mdi_crossover_manual_mdix);
  1013. #endif
  1014. dp83867_basic_mode_default_config(HPM_ENET0, &phy_config0);
  1015. if (dp83867_basic_mode_init(HPM_ENET0, &phy_config0) == true) {
  1016. return status_success;
  1017. } else {
  1018. printf("Enet0 phy init failed!\n");
  1019. return status_fail;
  1020. }
  1021. } else if (ptr == HPM_ENET1) {
  1022. dp83848_reset(HPM_ENET1);
  1023. dp83848_basic_mode_default_config(HPM_ENET1, &phy_config1);
  1024. if (dp83848_basic_mode_init(HPM_ENET1, &phy_config1) == true) {
  1025. return status_success;
  1026. } else {
  1027. printf("Enet1 phy init failed!\n");
  1028. return status_fail;
  1029. }
  1030. } else {
  1031. return status_invalid_argument;
  1032. }
  1033. }
  1034. ENET_Type *board_get_enet_base(uint8_t idx)
  1035. {
  1036. if (idx == 0) {
  1037. return HPM_ENET0;
  1038. } else {
  1039. return HPM_ENET1;
  1040. }
  1041. }
  1042. uint8_t board_get_enet_phy_itf(uint8_t idx)
  1043. {
  1044. if (idx == 0) {
  1045. return BOARD_ENET_RGMII_PHY_ITF;
  1046. } else {
  1047. return BOARD_ENET_RMII_PHY_ITF;
  1048. }
  1049. }
  1050. void board_get_enet_phy_status(uint8_t idx, void *status)
  1051. {
  1052. if (idx == 0) {
  1053. dp83867_get_phy_status(HPM_ENET0, status);
  1054. } else {
  1055. dp83848_get_phy_status(HPM_ENET1, status);
  1056. }
  1057. }
  1058. #endif
  1059. void board_init_dao_pins(void)
  1060. {
  1061. init_dao_pins();
  1062. }
  1063. void board_init_gptmr_channel_pin(GPTMR_Type *ptr, uint32_t channel, bool as_comp)
  1064. {
  1065. init_gptmr_channel_pin(ptr, channel, as_comp);
  1066. }
  1067. void board_init_clk_ref_pin(void)
  1068. {
  1069. init_clk_ref_pin();
  1070. }
  1071. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  1072. {
  1073. uint32_t freq = 0U;
  1074. if (ptr == HPM_GPTMR0) {
  1075. clock_add_to_group(clock_gptmr0, BOARD_RUNNING_CORE & 0x1);
  1076. freq = clock_get_frequency(clock_gptmr0);
  1077. } else if (ptr == HPM_GPTMR1) {
  1078. clock_add_to_group(clock_gptmr1, BOARD_RUNNING_CORE & 0x1);
  1079. freq = clock_get_frequency(clock_gptmr1);
  1080. } else if (ptr == HPM_GPTMR2) {
  1081. clock_add_to_group(clock_gptmr2, BOARD_RUNNING_CORE & 0x1);
  1082. freq = clock_get_frequency(clock_gptmr2);
  1083. } else if (ptr == HPM_GPTMR3) {
  1084. clock_add_to_group(clock_gptmr3, BOARD_RUNNING_CORE & 0x1);
  1085. freq = clock_get_frequency(clock_gptmr3);
  1086. } else if (ptr == HPM_GPTMR4) {
  1087. clock_add_to_group(clock_gptmr4, BOARD_RUNNING_CORE & 0x1);
  1088. freq = clock_get_frequency(clock_gptmr4);
  1089. } else if (ptr == HPM_GPTMR5) {
  1090. clock_add_to_group(clock_gptmr5, BOARD_RUNNING_CORE & 0x1);
  1091. freq = clock_get_frequency(clock_gptmr5);
  1092. } else if (ptr == HPM_GPTMR6) {
  1093. clock_add_to_group(clock_gptmr6, BOARD_RUNNING_CORE & 0x1);
  1094. freq = clock_get_frequency(clock_gptmr6);
  1095. } else if (ptr == HPM_GPTMR7) {
  1096. clock_add_to_group(clock_gptmr7, BOARD_RUNNING_CORE & 0x1);
  1097. freq = clock_get_frequency(clock_gptmr7);
  1098. } else if (ptr == HPM_PTMR) {
  1099. clock_add_to_group(clock_ptmr, BOARD_RUNNING_CORE & 0x1);
  1100. freq = clock_get_frequency(clock_ptmr);
  1101. } else {
  1102. /* Not supported */
  1103. }
  1104. return freq;
  1105. }