board.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. /*
  2. * Copyright (c) 2023-2024 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. *
  6. */
  7. #include "board.h"
  8. #include "hpm_uart_drv.h"
  9. #include "hpm_gptmr_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "pinmux.h"
  13. #include "hpm_pmp_drv.h"
  14. #include "hpm_clock_drv.h"
  15. #include "hpm_sysctl_drv.h"
  16. #include "hpm_pllctlv2_drv.h"
  17. #include "hpm_pcfg_drv.h"
  18. #include "hpm_enet_drv.h"
  19. #include "hpm_usb_drv.h"
  20. #include "hpm_femc_drv.h"
  21. #include "hpm_pwmv2_drv.h"
  22. #include "hpm_esc_drv.h"
  23. #include "hpm_tsw_drv.h"
  24. #include <rtconfig.h>
  25. /**
  26. * @brief FLASH configuration option definitions:
  27. * option[0]:
  28. * [31:16] 0xfcf9 - FLASH configuration option tag
  29. * [15:4] 0 - Reserved
  30. * [3:0] option words (exclude option[0])
  31. * option[1]:
  32. * [31:28] Flash probe type
  33. * 0 - SFDP SDR / 1 - SFDP DDR
  34. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  35. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  36. * 6 - OctaBus DDR (SPI -> OPI DDR)
  37. * 8 - Xccela DDR (SPI -> OPI DDR)
  38. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  39. * [27:24] Command Pads after Power-on Reset
  40. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  41. * [23:20] Command Pads after Configuring FLASH
  42. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  43. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  44. * 0 - Not needed
  45. * 1 - QE bit is at bit 6 in Status Register 1
  46. * 2 - QE bit is at bit1 in Status Register 2
  47. * 3 - QE bit is at bit7 in Status Register 2
  48. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  49. * [15:8] Dummy cycles
  50. * 0 - Auto-probed / detected / default value
  51. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  52. * [7:4] Misc.
  53. * 0 - Not used
  54. * 1 - SPI mode
  55. * 2 - Internal loopback
  56. * 3 - External DQS
  57. * [3:0] Frequency option
  58. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  59. *
  60. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  61. * [31:20] Reserved
  62. * [19:16] IO voltage
  63. * 0 - 3V / 1 - 1.8V
  64. * [15:12] Pin group
  65. * 0 - 1st group / 1 - 2nd group
  66. * [11:8] Connection selection
  67. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  68. * [7:0] Drive Strength
  69. * 0 - Default value
  70. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  71. * JESD216)
  72. * [31:16] reserved
  73. * [15:12] Sector Erase Command Option, not required here
  74. * [11:8] Sector Size Option, not required here
  75. * [7:0] Flash Size Option
  76. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  77. */
  78. #if defined(FLASH_XIP) && FLASH_XIP
  79. __attribute__((section(".nor_cfg_option"), used)) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
  80. #endif
  81. #if defined(FLASH_UF2) && FLASH_UF2
  82. ATTR_PLACE_AT(".uf2_signature") __attribute__((used)) const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  83. #endif
  84. void board_init_console(void)
  85. {
  86. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  87. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  88. console_config_t cfg;
  89. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  90. * uart rx pin when configuring pin function will cause a wrong data to be received.
  91. * And a uart rx dma request will be generated by default uart fifo dma trigger level.
  92. */
  93. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  94. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  95. cfg.type = BOARD_CONSOLE_TYPE;
  96. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  97. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  98. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  99. if (status_success != console_init(&cfg)) {
  100. /* failed to initialize debug console */
  101. while (1) {
  102. }
  103. }
  104. #else
  105. while (1)
  106. ;
  107. #endif
  108. #endif
  109. }
  110. void board_print_clock_freq(void)
  111. {
  112. printf("==============================\n");
  113. printf(" %s clock summary\n", BOARD_NAME);
  114. printf("==============================\n");
  115. printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
  116. printf("cpu1:\t\t %dHz\n", clock_get_frequency(clock_cpu1));
  117. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb0));
  118. printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif));
  119. printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis));
  120. printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic));
  121. printf("axin:\t\t %dHz\n", clock_get_frequency(clock_axin));
  122. printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
  123. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  124. printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
  125. printf("mchtmr1:\t %dHz\n", clock_get_frequency(clock_mchtmr1));
  126. printf("==============================\n");
  127. }
  128. void board_init_uart(UART_Type *ptr)
  129. {
  130. /* configure uart's pin before opening uart's clock */
  131. init_uart_pins(ptr);
  132. board_init_uart_clock(ptr);
  133. }
  134. void board_print_banner(void)
  135. {
  136. const uint8_t banner[] = { "\n\
  137. ----------------------------------------------------------------------\n\
  138. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  139. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  140. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  141. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  142. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  143. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  144. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  145. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  146. ----------------------------------------------------------------------\n" };
  147. #ifdef SDK_VERSION_STRING
  148. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  149. #endif
  150. printf("%s", banner);
  151. }
  152. void board_ungate_mchtmr_at_lp_mode(void)
  153. {
  154. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  155. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  156. }
  157. static void board_turnoff_rgb_led(void)
  158. {
  159. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(BOARD_LED_OFF_LEVEL);
  160. HPM_IOC->PAD[IOC_PAD_PE14].FUNC_CTL = IOC_PE14_FUNC_CTL_GPIO_E_14;
  161. HPM_IOC->PAD[IOC_PAD_PE15].FUNC_CTL = IOC_PE15_FUNC_CTL_GPIO_E_15;
  162. HPM_IOC->PAD[IOC_PAD_PE04].FUNC_CTL = IOC_PE04_FUNC_CTL_GPIO_E_04;
  163. HPM_IOC->PAD[IOC_PAD_PE14].PAD_CTL = pad_ctl;
  164. HPM_IOC->PAD[IOC_PAD_PE15].PAD_CTL = pad_ctl;
  165. HPM_IOC->PAD[IOC_PAD_PE04].PAD_CTL = pad_ctl;
  166. }
  167. void board_init(void)
  168. {
  169. board_turnoff_rgb_led();
  170. board_init_clock();
  171. board_init_console();
  172. board_init_pmp();
  173. #if BOARD_SHOW_CLOCK
  174. board_print_clock_freq();
  175. #endif
  176. #if BOARD_SHOW_BANNER
  177. board_print_banner();
  178. #endif
  179. }
  180. void board_init_core1(void)
  181. {
  182. clock_update_core_clock();
  183. board_init_console();
  184. board_init_pmp();
  185. }
  186. void board_init_sdram_pins(void)
  187. {
  188. init_femc_pins();
  189. }
  190. uint32_t board_init_femc_clock(void)
  191. {
  192. clock_add_to_group(clock_femc, 0);
  193. /* Default FEMC clock is 166MHz */
  194. /* Configure the FEMC to clk_src_pll1_clk0 / div, the clk_src_pll1_clk0 default frequency is 800MHz. */
  195. /* clock_set_source_divider(clock_femc, clk_src_pll1_clk0, 6U); */ /* Set FEMC clock to 133MHz */
  196. return clock_get_frequency(clock_femc);
  197. }
  198. void board_delay_us(uint32_t us)
  199. {
  200. clock_cpu_delay_us(us);
  201. }
  202. void board_delay_ms(uint32_t ms)
  203. {
  204. clock_cpu_delay_ms(ms);
  205. }
  206. #if !defined(NO_BOARD_TIMER_SUPPORT) || !NO_BOARD_TIMER_SUPPORT
  207. static board_timer_cb timer_cb;
  208. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr)
  209. void board_timer_isr(void)
  210. {
  211. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  212. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  213. timer_cb();
  214. }
  215. }
  216. void board_timer_create(uint32_t ms, board_timer_cb cb)
  217. {
  218. uint32_t gptmr_freq;
  219. gptmr_channel_config_t config;
  220. timer_cb = cb;
  221. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  222. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  223. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  224. config.reload = gptmr_freq / 1000 * ms;
  225. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  226. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  227. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  228. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  229. }
  230. #endif
  231. void board_i2c_bus_clear(I2C_Type *ptr)
  232. {
  233. if (i2c_get_line_scl_status(ptr) == false) {
  234. printf("CLK is low, please power cycle the board\n");
  235. while (1) {
  236. }
  237. }
  238. if (i2c_get_line_sda_status(ptr) == false) {
  239. printf("SDA is low, try to issue I2C bus clear\n");
  240. } else {
  241. printf("I2C bus is ready\n");
  242. return;
  243. }
  244. i2c_gen_reset_signal(ptr, 9);
  245. board_delay_ms(100);
  246. printf("I2C bus is cleared\n");
  247. }
  248. uint32_t board_init_i2c_clock(I2C_Type *ptr)
  249. {
  250. uint32_t freq = 0;
  251. if (ptr == HPM_I2C0) {
  252. clock_add_to_group(clock_i2c0, 0);
  253. freq = clock_get_frequency(clock_i2c0);
  254. } else if (ptr == HPM_I2C1) {
  255. clock_add_to_group(clock_i2c1, 0);
  256. freq = clock_get_frequency(clock_i2c1);
  257. } else if (ptr == HPM_I2C2) {
  258. clock_add_to_group(clock_i2c2, 0);
  259. freq = clock_get_frequency(clock_i2c2);
  260. } else if (ptr == HPM_I2C3) {
  261. clock_add_to_group(clock_i2c3, 0);
  262. freq = clock_get_frequency(clock_i2c3);
  263. } else if (ptr == HPM_I2C4) {
  264. clock_add_to_group(clock_i2c4, 0);
  265. freq = clock_get_frequency(clock_i2c4);
  266. } else if (ptr == HPM_I2C5) {
  267. clock_add_to_group(clock_i2c5, 0);
  268. freq = clock_get_frequency(clock_i2c5);
  269. } else if (ptr == HPM_I2C6) {
  270. clock_add_to_group(clock_i2c6, 0);
  271. freq = clock_get_frequency(clock_i2c6);
  272. } else if (ptr == HPM_I2C7) {
  273. clock_add_to_group(clock_i2c7, 0);
  274. freq = clock_get_frequency(clock_i2c7);
  275. } else {
  276. ;
  277. }
  278. return freq;
  279. }
  280. void board_init_i2c(I2C_Type *ptr)
  281. {
  282. i2c_config_t config;
  283. hpm_stat_t stat;
  284. uint32_t freq;
  285. freq = board_init_i2c_clock(ptr);
  286. init_i2c_pins(ptr);
  287. board_i2c_bus_clear(ptr);
  288. config.i2c_mode = i2c_mode_normal;
  289. config.is_10bit_addressing = false;
  290. stat = i2c_init_master(ptr, freq, &config);
  291. if (stat != status_success) {
  292. printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
  293. while (1) {
  294. }
  295. }
  296. }
  297. uint32_t board_init_spi_clock(SPI_Type *ptr)
  298. {
  299. if (ptr == HPM_SPI1) {
  300. clock_add_to_group(clock_spi1, 0);
  301. return clock_get_frequency(clock_spi1);
  302. } else if (ptr == HPM_SPI3) {
  303. clock_add_to_group(clock_spi3, 0);
  304. return clock_get_frequency(clock_spi3);
  305. } else if (ptr == HPM_SPI6) {
  306. clock_add_to_group(clock_spi6, 0);
  307. return clock_get_frequency(clock_spi6);
  308. } else if (ptr == HPM_SPI7) {
  309. clock_add_to_group(clock_spi7, 0);
  310. return clock_get_frequency(clock_spi7);
  311. } else {
  312. ;
  313. }
  314. return 0;
  315. }
  316. void board_init_gpio_pins(void)
  317. {
  318. init_gpio_pins();
  319. /* Key A*/
  320. gpio_set_pin_input(BOARD_APP_GPIO_CTRL, BOARD_APP_GPIO_INDEX, BOARD_APP_GPIO_PIN);
  321. /* Key B*/
  322. gpio_set_pin_input(BOARD_APP_GPIO_CTRL2, BOARD_APP_GPIO_INDEX2, BOARD_APP_GPIO_PIN2);
  323. }
  324. void board_init_spi_pins(SPI_Type *ptr)
  325. {
  326. init_spi_pins(ptr);
  327. }
  328. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  329. {
  330. init_spi_pins_with_gpio_as_cs(ptr);
  331. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  332. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  333. }
  334. void board_write_spi_cs(uint32_t pin, uint8_t state)
  335. {
  336. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  337. }
  338. uint8_t board_get_led_pwm_off_level(void)
  339. {
  340. return BOARD_LED_OFF_LEVEL;
  341. }
  342. uint8_t board_get_led_gpio_off_level(void)
  343. {
  344. return BOARD_LED_OFF_LEVEL;
  345. }
  346. void board_init_led_pins(void)
  347. {
  348. board_turnoff_rgb_led();
  349. init_led_pins_as_gpio();
  350. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  351. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  352. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  353. }
  354. void board_led_toggle(void)
  355. {
  356. #ifdef BOARD_LED_TOGGLE_RGB
  357. static uint8_t i;
  358. switch (i) {
  359. case 1:
  360. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  361. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
  362. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  363. break;
  364. case 2:
  365. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  366. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  367. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
  368. break;
  369. case 0:
  370. default:
  371. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
  372. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  373. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  374. break;
  375. }
  376. i++;
  377. i = i % 3;
  378. #else
  379. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  380. #endif
  381. }
  382. void board_led_write(uint8_t state)
  383. {
  384. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  385. }
  386. void board_init_rgb_pwm_pins(void)
  387. {
  388. board_turnoff_rgb_led();
  389. init_led_pins_as_pwm();
  390. }
  391. void board_disable_output_rgb_led(uint8_t color)
  392. {
  393. switch (color) {
  394. case BOARD_RGB_RED:
  395. pwmv2_channel_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  396. break;
  397. case BOARD_RGB_GREEN:
  398. pwmv2_channel_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  399. break;
  400. case BOARD_RGB_BLUE:
  401. pwmv2_channel_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  402. break;
  403. default:
  404. while (1) {
  405. ;
  406. }
  407. }
  408. }
  409. void board_enable_output_rgb_led(uint8_t color)
  410. {
  411. switch (color) {
  412. case BOARD_RGB_RED:
  413. pwmv2_channel_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  414. break;
  415. case BOARD_RGB_GREEN:
  416. pwmv2_channel_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  417. break;
  418. case BOARD_RGB_BLUE:
  419. pwmv2_channel_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  420. break;
  421. default:
  422. while (1) {
  423. ;
  424. }
  425. }
  426. }
  427. void board_init_pmp(void)
  428. {
  429. uint32_t start_addr;
  430. uint32_t end_addr;
  431. uint32_t length;
  432. pmp_entry_t pmp_entry[16];
  433. uint8_t index = 0;
  434. /* Init noncachable memory */
  435. extern uint32_t __noncacheable_start__[];
  436. extern uint32_t __noncacheable_end__[];
  437. start_addr = (uint32_t) __noncacheable_start__;
  438. end_addr = (uint32_t) __noncacheable_end__;
  439. length = end_addr - start_addr;
  440. if (length > 0) {
  441. /* Ensure the address and the length are power of 2 aligned */
  442. assert((length & (length - 1U)) == 0U);
  443. assert((start_addr & (length - 1U)) == 0U);
  444. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  445. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  446. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  447. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  448. index++;
  449. }
  450. pmp_config(&pmp_entry[0], index);
  451. }
  452. void board_init_clock(void)
  453. {
  454. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  455. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  456. /* Configure the External OSC ramp-up time: ~9ms */
  457. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32ul * 1000ul * 9u);
  458. /* select clock setting preset1 */
  459. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  460. }
  461. /* Add Clocks to group 0 */
  462. clock_add_to_group(clock_cpu0, 0);
  463. clock_add_to_group(clock_mchtmr0, 0);
  464. clock_add_to_group(clock_ahb0, 0);
  465. clock_add_to_group(clock_axif, 0);
  466. clock_add_to_group(clock_axis, 0);
  467. clock_add_to_group(clock_axic, 0);
  468. clock_add_to_group(clock_axin, 0);
  469. clock_add_to_group(clock_rom0, 0);
  470. clock_add_to_group(clock_xpi0, 0);
  471. clock_add_to_group(clock_lmm0, 0);
  472. clock_add_to_group(clock_lmm1, 0);
  473. clock_add_to_group(clock_ram0, 0);
  474. clock_add_to_group(clock_ram1, 0);
  475. clock_add_to_group(clock_hdma, 0);
  476. clock_add_to_group(clock_xdma, 0);
  477. clock_add_to_group(clock_gpio, 0);
  478. clock_add_to_group(clock_ptpc, 0);
  479. /* Motor Related */
  480. clock_add_to_group(clock_qei0, 0);
  481. clock_add_to_group(clock_qei1, 0);
  482. clock_add_to_group(clock_qei2, 0);
  483. clock_add_to_group(clock_qei3, 0);
  484. clock_add_to_group(clock_qeo0, 0);
  485. clock_add_to_group(clock_qeo1, 0);
  486. clock_add_to_group(clock_qeo2, 0);
  487. clock_add_to_group(clock_qeo3, 0);
  488. clock_add_to_group(clock_pwm0, 0);
  489. clock_add_to_group(clock_pwm1, 0);
  490. clock_add_to_group(clock_pwm2, 0);
  491. clock_add_to_group(clock_pwm3, 0);
  492. clock_add_to_group(clock_rdc0, 0);
  493. clock_add_to_group(clock_rdc1, 0);
  494. clock_add_to_group(clock_plb0, 0);
  495. clock_add_to_group(clock_sei0, 0);
  496. clock_add_to_group(clock_mtg0, 0);
  497. clock_add_to_group(clock_mtg1, 0);
  498. clock_add_to_group(clock_vsc0, 0);
  499. clock_add_to_group(clock_vsc1, 0);
  500. clock_add_to_group(clock_clc0, 0);
  501. clock_add_to_group(clock_clc1, 0);
  502. clock_add_to_group(clock_emds, 0);
  503. /* Connect Group0 to CPU0 */
  504. clock_connect_group_to_cpu(0, 0);
  505. /* Add the CPU1 clock to Group1 */
  506. clock_add_to_group(clock_cpu1, 1);
  507. clock_add_to_group(clock_mchtmr1, 1);
  508. /* Connect Group1 to CPU1 */
  509. clock_connect_group_to_cpu(1, 1);
  510. /* Bump up DCDC voltage to 1275mv */
  511. pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
  512. /* Set CPU clock to 600MHz */
  513. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  514. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  515. /* Configure mchtmr to 24MHz */
  516. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  517. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  518. clock_update_core_clock();
  519. }
  520. uint32_t board_init_uart_clock(UART_Type *ptr)
  521. {
  522. uint32_t freq = 0U;
  523. if (ptr == HPM_UART0) {
  524. clock_add_to_group(clock_uart0, 0);
  525. freq = clock_get_frequency(clock_uart0);
  526. } else if (ptr == HPM_UART1) {
  527. clock_add_to_group(clock_uart1, 0);
  528. freq = clock_get_frequency(clock_uart1);
  529. } else if (ptr == HPM_UART2) {
  530. clock_add_to_group(clock_uart2, 0);
  531. freq = clock_get_frequency(clock_uart2);
  532. } else if (ptr == HPM_UART6) {
  533. clock_add_to_group(clock_uart6, 0);
  534. freq = clock_get_frequency(clock_uart6);
  535. } else {
  536. /* Not supported */
  537. }
  538. return freq;
  539. }
  540. #ifdef INIT_EXT_RAM_FOR_DATA
  541. /*
  542. * this function will be called during startup to initialize external memory for data use
  543. */
  544. void _init_ext_ram(void)
  545. {
  546. uint32_t femc_clk_in_hz;
  547. femc_config_t config = {0};
  548. femc_sdram_config_t sdram_config = {0};
  549. board_init_sdram_pins();
  550. femc_clk_in_hz = board_init_femc_clock();
  551. femc_default_config(HPM_FEMC, &config);
  552. femc_init(HPM_FEMC, &config);
  553. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  554. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  555. sdram_config.prescaler = 0x3;
  556. sdram_config.burst_len_in_byte = 8;
  557. sdram_config.auto_refresh_count_in_one_burst = 1;
  558. sdram_config.col_addr_bits = BOARD_SDRAM_COLUMN_ADDR_BITS;
  559. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  560. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  561. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  562. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  563. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  564. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  565. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  566. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  567. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  568. sdram_config.cs = BOARD_SDRAM_CS;
  569. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  570. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  571. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  572. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  573. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  574. sdram_config.delay_cell_disable = true;
  575. sdram_config.delay_cell_value = 0;
  576. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  577. HPM_FEMC->SDRCTRL0 |= FEMC_SDRCTRL0_HIGHBAND_MASK; /* use data[31:16] for 16bit SDRAM */
  578. }
  579. #endif
  580. void board_init_usb(USB_Type *ptr)
  581. {
  582. if (ptr == HPM_USB0) {
  583. init_usb_pins(ptr);
  584. clock_add_to_group(clock_usb0, 0);
  585. usb_hcd_set_power_ctrl_polarity(ptr, true);
  586. /* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */
  587. board_delay_ms(100);
  588. }
  589. }
  590. uint32_t board_init_dao_clock(void)
  591. {
  592. clock_add_to_group(clock_dao, 0);
  593. board_config_i2s_clock(DAO_I2S, 48000);
  594. return clock_get_frequency(clock_dao);
  595. }
  596. uint32_t board_init_pdm_clock(void)
  597. {
  598. clock_add_to_group(clock_pdm, 0);
  599. board_config_i2s_clock(PDM_I2S, 16000);
  600. return clock_get_frequency(clock_pdm);
  601. }
  602. void board_init_i2s_pins(I2S_Type *ptr)
  603. {
  604. init_i2s_pins(ptr);
  605. }
  606. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  607. {
  608. uint32_t freq = 0;
  609. if (ptr == HPM_I2S0) {
  610. clock_add_to_group(clock_i2s0, 0);
  611. if ((sample_rate % 22050) == 0) {
  612. clock_set_source_divider(clock_aud0, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  613. } else {
  614. clock_set_source_divider(clock_aud0, clk_src_pll2_clk0, 21); /* default 24576000Hz */
  615. }
  616. clock_set_i2s_source(clock_i2s0, clk_i2s_src_audn); /* clk_i2s_src_audn is equal to clk_i2s_src_aud0 */
  617. freq = clock_get_frequency(clock_i2s0);
  618. } else if (ptr == HPM_I2S1) {
  619. clock_add_to_group(clock_i2s1, 0);
  620. if ((sample_rate % 22050) == 0) {
  621. clock_set_source_divider(clock_aud1, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  622. } else {
  623. clock_set_source_divider(clock_aud1, clk_src_pll2_clk0, 21); /* default 24576000Hz */
  624. }
  625. clock_set_i2s_source(clock_i2s1, clk_i2s_src_audn); /* clk_i2s_src_audn is equal to clk_i2s_src_aud1 */
  626. freq = clock_get_frequency(clock_i2s1);
  627. } else {
  628. ;
  629. }
  630. return freq;
  631. }
  632. void board_init_adc16_pins(void)
  633. {
  634. init_adc16_pins();
  635. }
  636. uint32_t board_init_adc_clock(void *ptr, bool clk_src_bus) /* motor system should be use clk_adc_src_ahb0 */
  637. {
  638. uint32_t freq = 0;
  639. if (ptr == (void *)HPM_ADC0) {
  640. clock_add_to_group(clock_adc0, 0);
  641. if (clk_src_bus) {
  642. /* Configure the ADC clock from AHB (@200MHz by default)*/
  643. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  644. } else {
  645. /* Configure the ADC clock from ANA (@200MHz by default)*/
  646. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  647. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  648. }
  649. freq = clock_get_frequency(clock_adc0);
  650. } else if (ptr == (void *)HPM_ADC1) {
  651. clock_add_to_group(clock_adc1, 0);
  652. if (clk_src_bus) {
  653. /* Configure the ADC clock from AHB (@200MHz by default)*/
  654. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  655. } else {
  656. /* Configure the ADC clock from ANA (@200MHz by default)*/
  657. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  658. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  659. }
  660. freq = clock_get_frequency(clock_adc1);
  661. } else if (ptr == (void *)HPM_ADC2) {
  662. clock_add_to_group(clock_adc2, 0);
  663. if (clk_src_bus) {
  664. /* Configure the ADC clock from AHB (@200MHz by default)*/
  665. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  666. } else {
  667. /* Configure the ADC clock from ANA (@200MHz by default)*/
  668. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  669. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  670. }
  671. freq = clock_get_frequency(clock_adc2);
  672. } else if (ptr == (void *)HPM_ADC3) {
  673. clock_add_to_group(clock_adc3, 0);
  674. if (clk_src_bus) {
  675. /* Configure the ADC clock from AHB (@200MHz by default)*/
  676. clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
  677. } else {
  678. /* Configure the ADC clock from ANA (@200MHz by default)*/
  679. clock_set_adc_source(clock_adc3, clk_adc_src_ana3);
  680. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  681. }
  682. freq = clock_get_frequency(clock_adc3);
  683. } else {
  684. ;
  685. }
  686. return freq;
  687. }
  688. void board_init_acmp_pins(void)
  689. {
  690. init_acmp_pins();
  691. }
  692. void board_init_acmp_clock(ACMP_Type *ptr)
  693. {
  694. (void)ptr;
  695. clock_add_to_group(BOARD_ACMP_CLK, BOARD_RUNNING_CORE & 0x1);
  696. }
  697. void board_init_can(MCAN_Type *ptr)
  698. {
  699. init_can_pins(ptr);
  700. }
  701. uint32_t board_init_can_clock(MCAN_Type *ptr)
  702. {
  703. uint32_t freq = 0;
  704. if (ptr == HPM_MCAN0) {
  705. /* Set the CAN0 peripheral clock to 80MHz */
  706. clock_add_to_group(clock_can0, 0);
  707. clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10);
  708. freq = clock_get_frequency(clock_can0);
  709. } else if (ptr == HPM_MCAN1) {
  710. /* Set the CAN1 peripheral clock to 80MHz */
  711. clock_add_to_group(clock_can1, 0);
  712. clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10);
  713. freq = clock_get_frequency(clock_can1);
  714. } else if (ptr == HPM_MCAN2) {
  715. /* Set the CAN2 peripheral clock to 80MHz */
  716. clock_add_to_group(clock_can2, 0);
  717. clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10);
  718. freq = clock_get_frequency(clock_can2);
  719. } else if (ptr == HPM_MCAN3) {
  720. /* Set the CAN3 peripheral clock to 80MHz */
  721. clock_add_to_group(clock_can3, 0);
  722. clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10);
  723. freq = clock_get_frequency(clock_can3);
  724. } else if (ptr == HPM_MCAN4) {
  725. /* Set the CAN4 peripheral clock to 80MHz */
  726. clock_add_to_group(clock_can4, 0);
  727. clock_set_source_divider(clock_can4, clk_src_pll1_clk0, 10);
  728. freq = clock_get_frequency(clock_can4);
  729. } else if (ptr == HPM_MCAN5) {
  730. /* Set the CAN5 peripheral clock to 80MHz */
  731. clock_add_to_group(clock_can5, 0);
  732. clock_set_source_divider(clock_can5, clk_src_pll1_clk0, 10);
  733. freq = clock_get_frequency(clock_can5);
  734. } else if (ptr == HPM_MCAN6) {
  735. /* Set the CAN6 peripheral clock to 80MHz */
  736. clock_add_to_group(clock_can6, 0);
  737. clock_set_source_divider(clock_can6, clk_src_pll1_clk0, 10);
  738. freq = clock_get_frequency(clock_can6);
  739. } else if (ptr == HPM_MCAN7) {
  740. /* Set the CAN7 peripheral clock to 80MHz */
  741. clock_add_to_group(clock_can7, 0);
  742. clock_set_source_divider(clock_can7, clk_src_pll1_clk0, 10);
  743. freq = clock_get_frequency(clock_can3);
  744. } else {
  745. /* Invalid CAN instance */
  746. }
  747. return freq;
  748. }
  749. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  750. {
  751. /* set clock source */
  752. if (ptr == HPM_ENET0) {
  753. clock_add_to_group(clock_ptp0, BOARD_RUNNING_CORE & 0x1);
  754. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  755. /* clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); */ /* 100MHz */
  756. } else {
  757. return status_invalid_argument;
  758. }
  759. return status_success;
  760. }
  761. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  762. {
  763. init_enet_pins(ptr);
  764. if (ptr == HPM_ENET0) {
  765. gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  766. } else {
  767. return status_invalid_argument;
  768. }
  769. return status_success;
  770. }
  771. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  772. {
  773. if (ptr == HPM_ENET0) {
  774. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  775. board_delay_ms(1);
  776. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
  777. } else {
  778. return status_invalid_argument;
  779. }
  780. return status_success;
  781. }
  782. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  783. {
  784. (void) ptr;
  785. return enet_pbl_32;
  786. }
  787. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  788. {
  789. if (ptr == HPM_ENET0) {
  790. intc_m_enable_irq(IRQn_ENET0);
  791. } else {
  792. return status_invalid_argument;
  793. }
  794. return status_success;
  795. }
  796. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  797. {
  798. if (ptr == HPM_ENET0) {
  799. intc_m_disable_irq(IRQn_ENET0);
  800. } else {
  801. return status_invalid_argument;
  802. }
  803. return status_success;
  804. }
  805. void board_init_enet_pps_pins(ENET_Type *ptr)
  806. {
  807. (void) ptr;
  808. init_enet_pps_pins();
  809. }
  810. void board_init_enet_pps_capture_pins(ENET_Type *ptr)
  811. {
  812. (void) ptr;
  813. init_enet_pps_capture_pins();
  814. }
  815. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  816. {
  817. /* Configure Enet clock to output reference clock */
  818. if (ptr == HPM_ENET0) {
  819. clock_add_to_group(clock_eth0, BOARD_RUNNING_CORE & 0x1);
  820. if (internal) {
  821. /* set pll output frequency at 1GHz */
  822. if (pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, pllctlv2_pll2, 1000000000UL) == status_success) {
  823. /* set pll2_clk1 output frequency at 250MHz from PLL2 divided by 4 (1 + 15 / 5) */
  824. pllctlv2_set_postdiv(HPM_PLLCTLV2, pllctlv2_pll2, pllctlv2_clk1, pllctlv2_div_4p0);
  825. /* set eth clock frequency at 50MHz for enet0 */
  826. /* clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5); */
  827. } else {
  828. return status_fail;
  829. }
  830. }
  831. } else {
  832. return status_invalid_argument;
  833. }
  834. enet_rmii_enable_clock(ptr, internal);
  835. return status_success;
  836. }
  837. hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
  838. {
  839. if (ptr == HPM_ENET0) {
  840. clock_add_to_group(clock_eth0, BOARD_RUNNING_CORE & 0x1);
  841. return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
  842. }
  843. return status_invalid_argument;
  844. }
  845. void board_init_dao_pins(void)
  846. {
  847. init_dao_pins();
  848. }
  849. void board_init_ethercat(ESC_Type *ptr)
  850. {
  851. (void)ptr;
  852. clock_add_to_group(clock_esc0, 0);
  853. init_esc_pins();
  854. /* keep ECAT PHY reset */
  855. gpio_set_pin_output_with_initial(BOARD_ECAT_PHY0_RESET_GPIO, BOARD_ECAT_PHY0_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY0_RESET_PIN_INDEX, BOARD_ECAT_PHY_RESET_LEVEL);
  856. gpio_set_pin_output_with_initial(BOARD_ECAT_PHY1_RESET_GPIO, BOARD_ECAT_PHY1_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY1_RESET_PIN_INDEX, BOARD_ECAT_PHY_RESET_LEVEL);
  857. }
  858. /* input and output pin for ethercat io test */
  859. void board_init_switch_led(void)
  860. {
  861. init_esc_in_out_pin();
  862. gpio_set_pin_input(BOARD_ECAT_IN1_GPIO, BOARD_ECAT_IN1_GPIO_PORT_INDEX, BOARD_ECAT_IN1_GPIO_PIN_INDEX);
  863. gpio_set_pin_input(BOARD_ECAT_IN2_GPIO, BOARD_ECAT_IN2_GPIO_PORT_INDEX, BOARD_ECAT_IN2_GPIO_PIN_INDEX);
  864. gpio_set_pin_output_with_initial(BOARD_ECAT_OUT1_GPIO, BOARD_ECAT_OUT1_GPIO_PORT_INDEX, BOARD_ECAT_OUT1_GPIO_PIN_INDEX, 0);
  865. gpio_set_pin_output_with_initial(BOARD_ECAT_OUT2_GPIO, BOARD_ECAT_OUT2_GPIO_PORT_INDEX, BOARD_ECAT_OUT2_GPIO_PIN_INDEX, 0);
  866. }
  867. void board_init_tsw_pins(TSW_Type *ptr)
  868. {
  869. (void) ptr;
  870. init_tsw_pins();
  871. clock_add_to_group(clock_tsn1, 0);
  872. clock_add_to_group(clock_tsn2, 0);
  873. clock_add_to_group(clock_tsn3, 0);
  874. clock_add_to_group(clock_esc0, 0);
  875. /* Enable XI clock for JL1111 */
  876. esc_core_enable_clock(HPM_ESC, true);
  877. esc_phy_enable_clock(HPM_ESC, true);
  878. }
  879. void board_reset_tsw_phy(TSW_Type *ptr, uint8_t port)
  880. {
  881. (void) ptr;
  882. if (port == TSW_TSNPORT_PORT1 || port == TSW_TSNPORT_PORT2) {
  883. gpio_set_pin_output_with_initial(BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO, BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO_INDEX, BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO_PIN, 0);
  884. gpio_write_pin(BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO, BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO_INDEX, BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO_PIN, 0);
  885. board_delay_ms(100);
  886. gpio_write_pin(BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO, BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO_INDEX, BOARD_TSW_PORT1_PORT2_PHY_RST_GPIO_PIN, 1);
  887. }
  888. if (port == TSW_TSNPORT_PORT3) {
  889. gpio_set_pin_output_with_initial(BOARD_TSW_PORT3_PHY_RST_GPIO, BOARD_TSW_PORT3_PHY_RST_GPIO_INDEX, BOARD_TSW_PORT3_PHY_RST_GPIO_PIN, 0);
  890. gpio_write_pin(BOARD_TSW_PORT3_PHY_RST_GPIO, BOARD_TSW_PORT3_PHY_RST_GPIO_INDEX, BOARD_TSW_PORT3_PHY_RST_GPIO_PIN, 0);
  891. board_delay_ms(100);
  892. gpio_write_pin(BOARD_TSW_PORT3_PHY_RST_GPIO, BOARD_TSW_PORT3_PHY_RST_GPIO_INDEX, BOARD_TSW_PORT3_PHY_RST_GPIO_PIN, 1);
  893. }
  894. }
  895. void board_init_tsw_rgmii_clock_delay(TSW_Type *ptr, uint8_t port)
  896. {
  897. tsw_set_port_clock_delay(ptr, port, BOARD_TSW_PORT3_RGMII_TX_DLY, BOARD_TSW_PORT3_RGMII_TX_DLY);
  898. }
  899. void board_init_sei_pins(SEI_Type *ptr, uint8_t sei_ctrl_idx)
  900. {
  901. init_sei_pins(ptr, sei_ctrl_idx);
  902. }
  903. void board_init_adc_qeiv2_pins(void)
  904. {
  905. init_adc_qeiv2_pins();
  906. }
  907. void board_init_gptmr_channel_pin(GPTMR_Type *ptr, uint32_t channel, bool as_comp)
  908. {
  909. init_gptmr_channel_pin(ptr, channel, as_comp);
  910. }
  911. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  912. {
  913. uint32_t freq = 0U;
  914. if (ptr == HPM_GPTMR0) {
  915. clock_add_to_group(clock_gptmr0, BOARD_RUNNING_CORE & 0x1);
  916. freq = clock_get_frequency(clock_gptmr0);
  917. } else if (ptr == HPM_GPTMR1) {
  918. clock_add_to_group(clock_gptmr1, BOARD_RUNNING_CORE & 0x1);
  919. freq = clock_get_frequency(clock_gptmr1);
  920. } else if (ptr == HPM_GPTMR2) {
  921. clock_add_to_group(clock_gptmr2, BOARD_RUNNING_CORE & 0x1);
  922. freq = clock_get_frequency(clock_gptmr2);
  923. } else if (ptr == HPM_GPTMR3) {
  924. clock_add_to_group(clock_gptmr3, BOARD_RUNNING_CORE & 0x1);
  925. freq = clock_get_frequency(clock_gptmr3);
  926. } else if (ptr == HPM_GPTMR4) {
  927. clock_add_to_group(clock_gptmr4, BOARD_RUNNING_CORE & 0x1);
  928. freq = clock_get_frequency(clock_gptmr4);
  929. } else if (ptr == HPM_GPTMR5) {
  930. clock_add_to_group(clock_gptmr5, BOARD_RUNNING_CORE & 0x1);
  931. freq = clock_get_frequency(clock_gptmr5);
  932. } else if (ptr == HPM_GPTMR6) {
  933. clock_add_to_group(clock_gptmr6, BOARD_RUNNING_CORE & 0x1);
  934. freq = clock_get_frequency(clock_gptmr6);
  935. } else if (ptr == HPM_GPTMR7) {
  936. clock_add_to_group(clock_gptmr7, BOARD_RUNNING_CORE & 0x1);
  937. freq = clock_get_frequency(clock_gptmr7);
  938. } else if (ptr == HPM_PTMR) {
  939. clock_add_to_group(clock_ptmr, BOARD_RUNNING_CORE & 0x1);
  940. freq = clock_get_frequency(clock_ptmr);
  941. } else {
  942. /* Not supported */
  943. }
  944. return freq;
  945. }