drv_spi.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-03-18 ZYH first version
  9. */
  10. #include <rtthread.h>
  11. #include <rtdevice.h>
  12. #include <spi.h>
  13. #ifdef RT_USING_SPI
  14. #include "drv_spi.h"
  15. #include <drv_io_config.h>
  16. #include <drivers/dev_spi.h>
  17. #include "dmalock.h"
  18. #include <sysctl.h>
  19. #include <gpiohs.h>
  20. #include <string.h>
  21. #include "utils.h"
  22. #define DRV_SPI_DEVICE(spi_bus) (struct drv_spi_bus *)(spi_bus)
  23. #define MAX_CLOCK (40000000UL)
  24. struct drv_spi_bus
  25. {
  26. struct rt_spi_bus parent;
  27. spi_device_num_t spi_instance;
  28. dmac_channel_number_t dma_send_channel;
  29. dmac_channel_number_t dma_recv_channel;
  30. struct rt_completion dma_completion;
  31. };
  32. struct drv_cs
  33. {
  34. int cs_index;
  35. int cs_pin;
  36. };
  37. static volatile spi_t *const spi_instance[4] =
  38. {
  39. (volatile spi_t *)SPI0_BASE_ADDR,
  40. (volatile spi_t *)SPI1_BASE_ADDR,
  41. (volatile spi_t *)SPI_SLAVE_BASE_ADDR,
  42. (volatile spi_t *)SPI3_BASE_ADDR
  43. };
  44. static rt_err_t drv_spi_configure(struct rt_spi_device *device,
  45. struct rt_spi_configuration *configuration)
  46. {
  47. rt_err_t ret = RT_EOK;
  48. int freq = 0;
  49. struct drv_spi_bus *bus = DRV_SPI_DEVICE(device->bus);
  50. struct drv_cs * cs = (struct drv_cs *)device->parent.user_data;
  51. RT_ASSERT(bus != RT_NULL);
  52. gpiohs_set_drive_mode(cs->cs_pin, GPIO_DM_OUTPUT);
  53. gpiohs_set_pin(cs->cs_pin, GPIO_PV_HIGH);
  54. #ifdef BSP_USING_SPI1_AS_QSPI
  55. /* Todo:QSPI*/
  56. #else
  57. spi_init(bus->spi_instance, configuration->mode & RT_SPI_MODE_3, SPI_FF_STANDARD, configuration->data_width, 0);
  58. #endif
  59. freq = spi_set_clk_rate(bus->spi_instance, configuration->max_hz > MAX_CLOCK ? MAX_CLOCK : configuration->max_hz);
  60. rt_kprintf("set spi freq %d\n", freq);
  61. return ret;
  62. }
  63. void __spi_set_tmod(uint8_t spi_num, uint32_t tmod)
  64. {
  65. RT_ASSERT(spi_num < SPI_DEVICE_MAX);
  66. volatile spi_t *spi_handle = spi[spi_num];
  67. uint8_t tmod_offset = 0;
  68. switch(spi_num)
  69. {
  70. case 0:
  71. case 1:
  72. case 2:
  73. tmod_offset = 8;
  74. break;
  75. case 3:
  76. default:
  77. tmod_offset = 10;
  78. break;
  79. }
  80. set_bit(&spi_handle->ctrlr0, 3 << tmod_offset, tmod << tmod_offset);
  81. }
  82. int dma_irq_callback(void *ctx)
  83. {
  84. struct rt_completion * cmp = ctx;
  85. if(cmp)
  86. {
  87. rt_completion_done(cmp);
  88. }
  89. }
  90. static rt_uint32_t drv_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
  91. {
  92. struct drv_spi_bus *bus = DRV_SPI_DEVICE(device->bus);
  93. struct drv_cs * cs = (struct drv_cs *)device->parent.user_data;
  94. struct rt_spi_configuration *cfg = &device->config;
  95. uint32_t * tx_buff = RT_NULL;
  96. uint32_t * rx_buff = RT_NULL;
  97. int i;
  98. rt_ubase_t dummy = 0xFFFFFFFFU;
  99. if(cfg->data_width != 8)
  100. {
  101. return 0;
  102. }
  103. RT_ASSERT(bus != RT_NULL);
  104. if(message->cs_take)
  105. {
  106. gpiohs_set_pin(cs->cs_pin, GPIO_PV_LOW);
  107. }
  108. if(message->length)
  109. {
  110. bus->dma_send_channel = DMAC_CHANNEL_MAX;
  111. bus->dma_recv_channel = DMAC_CHANNEL_MAX;
  112. rt_completion_init(&bus->dma_completion);
  113. if(message->recv_buf)
  114. {
  115. dmalock_sync_take(&bus->dma_recv_channel, RT_WAITING_FOREVER);
  116. sysctl_dma_select(bus->dma_recv_channel, SYSCTL_DMA_SELECT_SSI0_RX_REQ + bus->spi_instance * 2);
  117. rx_buff = rt_calloc(message->length * 4, 1);
  118. if(!rx_buff)
  119. {
  120. goto transfer_done;
  121. }
  122. }
  123. if(message->send_buf)
  124. {
  125. dmalock_sync_take(&bus->dma_send_channel, RT_WAITING_FOREVER);
  126. sysctl_dma_select(bus->dma_send_channel, SYSCTL_DMA_SELECT_SSI0_TX_REQ + bus->spi_instance * 2);
  127. tx_buff = rt_malloc(message->length * 4);
  128. if(!tx_buff)
  129. {
  130. goto transfer_done;
  131. }
  132. for(i = 0; i < message->length; i++)
  133. {
  134. tx_buff[i] = ((uint8_t *)message->send_buf)[i];
  135. }
  136. }
  137. if(message->send_buf && message->recv_buf)
  138. {
  139. dmac_irq_register(bus->dma_recv_channel, dma_irq_callback, &bus->dma_completion, 1);
  140. __spi_set_tmod(bus->spi_instance, SPI_TMOD_TRANS_RECV);
  141. spi_instance[bus->spi_instance]->dmacr = 0x3;
  142. spi_instance[bus->spi_instance]->ssienr = 0x01;
  143. dmac_set_single_mode(bus->dma_recv_channel, (void *)(&spi_instance[bus->spi_instance]->dr[0]), rx_buff, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
  144. DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, message->length);
  145. dmac_set_single_mode(bus->dma_send_channel, tx_buff, (void *)(&spi_instance[bus->spi_instance]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
  146. DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, message->length);
  147. }
  148. else if(message->send_buf)
  149. {
  150. dmac_irq_register(bus->dma_send_channel, dma_irq_callback, &bus->dma_completion, 1);
  151. __spi_set_tmod(bus->spi_instance, SPI_TMOD_TRANS);
  152. spi_instance[bus->spi_instance]->dmacr = 0x2;
  153. spi_instance[bus->spi_instance]->ssienr = 0x01;
  154. dmac_set_single_mode(bus->dma_send_channel, tx_buff, (void *)(&spi_instance[bus->spi_instance]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
  155. DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, message->length);
  156. }
  157. else if(message->recv_buf)
  158. {
  159. dmac_irq_register(bus->dma_recv_channel, dma_irq_callback, &bus->dma_completion, 1);
  160. __spi_set_tmod(bus->spi_instance, SPI_TMOD_RECV);
  161. spi_instance[bus->spi_instance]->ctrlr1 = message->length - 1;
  162. spi_instance[bus->spi_instance]->dmacr = 0x1;
  163. spi_instance[bus->spi_instance]->ssienr = 0x01;
  164. spi_instance[bus->spi_instance]->dr[0] = 0xFF;
  165. dmac_set_single_mode(bus->dma_recv_channel, (void *)(&spi_instance[bus->spi_instance]->dr[0]), rx_buff, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
  166. DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, message->length);
  167. }
  168. else
  169. {
  170. goto transfer_done;
  171. }
  172. spi_instance[bus->spi_instance]->ser = 1U << cs->cs_index;
  173. rt_completion_wait(&bus->dma_completion, RT_WAITING_FOREVER);
  174. if(message->recv_buf)
  175. dmac_irq_unregister(bus->dma_recv_channel);
  176. else
  177. dmac_irq_unregister(bus->dma_send_channel);
  178. // wait until all data has been transmitted
  179. while ((spi_instance[bus->spi_instance]->sr & 0x05) != 0x04)
  180. ;
  181. spi_instance[bus->spi_instance]->ser = 0x00;
  182. spi_instance[bus->spi_instance]->ssienr = 0x00;
  183. if(message->recv_buf)
  184. {
  185. for(i = 0; i < message->length; i++)
  186. {
  187. ((uint8_t *)message->recv_buf)[i] = (uint8_t)rx_buff[i];
  188. }
  189. }
  190. transfer_done:
  191. dmalock_release(bus->dma_send_channel);
  192. dmalock_release(bus->dma_recv_channel);
  193. if(tx_buff)
  194. {
  195. rt_free(tx_buff);
  196. }
  197. if(rx_buff)
  198. {
  199. rt_free(rx_buff);
  200. }
  201. }
  202. if(message->cs_release)
  203. {
  204. gpiohs_set_pin(cs->cs_pin, GPIO_PV_HIGH);
  205. }
  206. return message->length;
  207. }
  208. const static struct rt_spi_ops drv_spi_ops =
  209. {
  210. drv_spi_configure,
  211. drv_spi_xfer
  212. };
  213. int rt_hw_spi_init(void)
  214. {
  215. rt_err_t ret = RT_EOK;
  216. #ifdef BSP_USING_SPI1
  217. {
  218. static struct drv_spi_bus spi_bus1;
  219. spi_bus1.spi_instance = SPI_DEVICE_1;
  220. ret = rt_spi_bus_register(&spi_bus1.parent, "spi1", &drv_spi_ops);
  221. #ifdef BSP_SPI1_USING_SS0
  222. {
  223. static struct rt_spi_device spi_device10;
  224. static struct drv_cs cs10 =
  225. {
  226. .cs_index = SPI_CHIP_SELECT_0,
  227. .cs_pin = SPI1_CS0_PIN
  228. };
  229. rt_spi_bus_attach_device(&spi_device10, "spi10", "spi1", (void *)&cs10);
  230. }
  231. #endif
  232. #ifdef BSP_SPI1_USING_SS1
  233. {
  234. static struct rt_spi_device spi_device11;
  235. static struct drv_cs cs11 =
  236. {
  237. .cs_index = SPI_CHIP_SELECT_1,
  238. .cs_pin = SPI1_CS1_PIN
  239. };
  240. rt_spi_bus_attach_device(&spi_device11, "spi11", "spi1", (void *)&cs11);
  241. }
  242. #endif
  243. #ifdef BSP_SPI1_USING_SS2
  244. {
  245. static struct rt_spi_device spi_device12;
  246. static struct drv_cs cs12 =
  247. {
  248. .cs_index = SPI_CHIP_SELECT_2,
  249. .cs_pin = SPI1_CS2_PIN
  250. };
  251. rt_spi_bus_attach_device(&spi_device12, "spi12", "spi1", (void *)&cs12);
  252. }
  253. #endif
  254. #ifdef BSP_SPI1_USING_SS3
  255. {
  256. static struct rt_spi_device spi_device13;
  257. static struct drv_cs cs13 =
  258. {
  259. .cs_index = SPI_CHIP_SELECT_2,
  260. .cs_pin = SPI1_CS2_PIN
  261. };
  262. rt_spi_bus_attach_device(&spi_device13, "spi13", "spi1", (void *)&cs13);
  263. }
  264. #endif
  265. }
  266. #endif
  267. return ret;
  268. }
  269. INIT_DEVICE_EXPORT(rt_hw_spi_init);
  270. #endif