dma_pool.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2023-02-25 GuEe-GUI the first version
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <rtdevice.h>
  13. #define DBG_TAG "dma.pool"
  14. #define DBG_LVL DBG_INFO
  15. #include <rtdbg.h>
  16. #include <mm_aspace.h>
  17. #include <mm_memblock.h>
  18. #include <dt-bindings/size.h>
  19. static RT_DEFINE_SPINLOCK(dma_pools_lock);
  20. static rt_list_t dma_pool_nodes = RT_LIST_OBJECT_INIT(dma_pool_nodes);
  21. static struct rt_dma_pool *dma_pool_install(rt_region_t *region);
  22. static void *dma_alloc(struct rt_device *dev, rt_size_t size,
  23. rt_ubase_t *dma_handle, rt_ubase_t flags);
  24. static void dma_free(struct rt_device *dev, rt_size_t size,
  25. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags);
  26. rt_inline void region_pool_lock(void)
  27. {
  28. rt_hw_spin_lock(&dma_pools_lock.lock);
  29. }
  30. rt_inline void region_pool_unlock(void)
  31. {
  32. rt_hw_spin_unlock(&dma_pools_lock.lock);
  33. }
  34. static rt_err_t dma_map_coherent_sync_out_data(struct rt_device *dev,
  35. void *data, rt_size_t size, rt_ubase_t *dma_handle, rt_ubase_t flags)
  36. {
  37. if (dma_handle)
  38. {
  39. *dma_handle = (rt_ubase_t)rt_kmem_v2p(data);
  40. }
  41. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, data, size);
  42. return RT_EOK;
  43. }
  44. static rt_err_t dma_map_coherent_sync_in_data(struct rt_device *dev,
  45. void *out_data, rt_size_t size, rt_ubase_t dma_handle, rt_ubase_t flags)
  46. {
  47. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, out_data, size);
  48. return RT_EOK;
  49. }
  50. static const struct rt_dma_map_ops dma_map_coherent_ops =
  51. {
  52. .sync_out_data = dma_map_coherent_sync_out_data,
  53. .sync_in_data = dma_map_coherent_sync_in_data,
  54. };
  55. static rt_err_t dma_map_nocoherent_sync_out_data(struct rt_device *dev,
  56. void *data, rt_size_t size, rt_ubase_t *dma_handle, rt_ubase_t flags)
  57. {
  58. if (dma_handle)
  59. {
  60. *dma_handle = (rt_ubase_t)rt_kmem_v2p(data);
  61. }
  62. return RT_EOK;
  63. }
  64. static rt_err_t dma_map_nocoherent_sync_in_data(struct rt_device *dev,
  65. void *out_data, rt_size_t size, rt_ubase_t dma_handle, rt_ubase_t flags)
  66. {
  67. return RT_EOK;
  68. }
  69. static const struct rt_dma_map_ops dma_map_nocoherent_ops =
  70. {
  71. .sync_out_data = dma_map_nocoherent_sync_out_data,
  72. .sync_in_data = dma_map_nocoherent_sync_in_data,
  73. };
  74. #ifdef RT_USING_OFW
  75. rt_inline rt_ubase_t ofw_addr_cpu2dma(struct rt_device *dev, rt_ubase_t addr)
  76. {
  77. return (rt_ubase_t)rt_ofw_translate_cpu2dma(dev->ofw_node, addr);
  78. }
  79. rt_inline rt_ubase_t ofw_addr_dma2cpu(struct rt_device *dev, rt_ubase_t addr)
  80. {
  81. return (rt_ubase_t)rt_ofw_translate_dma2cpu(dev->ofw_node, addr);
  82. }
  83. static void *ofw_dma_map_alloc(struct rt_device *dev, rt_size_t size,
  84. rt_ubase_t *dma_handle, rt_ubase_t flags)
  85. {
  86. void *cpu_addr = dma_alloc(dev, size, dma_handle, flags);
  87. if (cpu_addr && dma_handle)
  88. {
  89. *dma_handle = ofw_addr_cpu2dma(dev, *dma_handle);
  90. }
  91. return cpu_addr;
  92. }
  93. static void ofw_dma_map_free(struct rt_device *dev, rt_size_t size,
  94. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
  95. {
  96. dma_handle = ofw_addr_dma2cpu(dev, dma_handle);
  97. dma_free(dev, size, cpu_addr, dma_handle, flags);
  98. }
  99. static rt_err_t ofw_dma_map_sync_out_data(struct rt_device *dev,
  100. void *data, rt_size_t size,
  101. rt_ubase_t *dma_handle, rt_ubase_t flags)
  102. {
  103. rt_err_t err;
  104. if (flags & RT_DMA_F_NOCACHE)
  105. {
  106. err = dma_map_nocoherent_sync_out_data(dev, data, size, dma_handle, flags);
  107. }
  108. else
  109. {
  110. err = dma_map_coherent_sync_out_data(dev, data, size, dma_handle, flags);
  111. }
  112. if (!err && dma_handle)
  113. {
  114. *dma_handle = ofw_addr_cpu2dma(dev, *dma_handle);
  115. }
  116. return err;
  117. }
  118. static rt_err_t ofw_dma_map_sync_in_data(struct rt_device *dev,
  119. void *out_data, rt_size_t size,
  120. rt_ubase_t dma_handle, rt_ubase_t flags)
  121. {
  122. dma_handle = ofw_addr_dma2cpu(dev, dma_handle);
  123. if (flags & RT_DMA_F_NOCACHE)
  124. {
  125. return dma_map_nocoherent_sync_in_data(dev, out_data, size, dma_handle, flags);
  126. }
  127. return dma_map_coherent_sync_in_data(dev, out_data, size, dma_handle, flags);
  128. }
  129. static const struct rt_dma_map_ops ofw_dma_map_ops =
  130. {
  131. .alloc = ofw_dma_map_alloc,
  132. .free = ofw_dma_map_free,
  133. .sync_out_data = ofw_dma_map_sync_out_data,
  134. .sync_in_data = ofw_dma_map_sync_in_data,
  135. };
  136. static const struct rt_dma_map_ops *ofw_device_dma_ops(struct rt_device *dev)
  137. {
  138. rt_err_t err;
  139. int region_nr = 0;
  140. const fdt32_t *cell;
  141. rt_phandle phandle;
  142. rt_region_t region;
  143. struct rt_ofw_prop *prop;
  144. struct rt_dma_pool *dma_pool;
  145. const struct rt_dma_map_ops *ops = RT_NULL;
  146. struct rt_ofw_node *mem_np, *np = dev->ofw_node;
  147. rt_ofw_foreach_prop_u32(np, "memory-region", prop, cell, phandle)
  148. {
  149. rt_uint64_t addr, size;
  150. if (!(mem_np = rt_ofw_find_node_by_phandle(phandle)))
  151. {
  152. if (region_nr == 0)
  153. {
  154. return RT_NULL;
  155. }
  156. break;
  157. }
  158. if ((err = rt_ofw_get_address(mem_np, 0, &addr, &size)))
  159. {
  160. LOG_E("%s: Read '%s' error = %s", rt_ofw_node_full_name(mem_np),
  161. "memory-region", rt_strerror(err));
  162. rt_ofw_node_put(mem_np);
  163. continue;
  164. }
  165. region.start = addr;
  166. region.end = addr + size;
  167. region.name = rt_dm_dev_get_name(dev);
  168. rt_ofw_node_put(mem_np);
  169. if (!(dma_pool = dma_pool_install(&region)))
  170. {
  171. return RT_NULL;
  172. }
  173. if (rt_ofw_prop_read_bool(mem_np, "no-map"))
  174. {
  175. dma_pool->flags |= RT_DMA_F_NOMAP;
  176. }
  177. if (!rt_dma_device_is_coherent(dev))
  178. {
  179. dma_pool->flags |= RT_DMA_F_NOCACHE;
  180. }
  181. dma_pool->dev = dev;
  182. ++region_nr;
  183. }
  184. if (region_nr)
  185. {
  186. ops = &ofw_dma_map_ops;
  187. }
  188. return ops;
  189. }
  190. #endif /* RT_USING_OFW */
  191. static const struct rt_dma_map_ops *device_dma_ops(struct rt_device *dev)
  192. {
  193. const struct rt_dma_map_ops *ops = dev->dma_ops;
  194. if (ops)
  195. {
  196. return ops;
  197. }
  198. #ifdef RT_USING_OFW
  199. if (dev->ofw_node && (ops = ofw_device_dma_ops(dev)))
  200. {
  201. return ops;
  202. }
  203. #endif
  204. if (rt_dma_device_is_coherent(dev))
  205. {
  206. ops = &dma_map_coherent_ops;
  207. }
  208. else
  209. {
  210. ops = &dma_map_nocoherent_ops;
  211. }
  212. dev->dma_ops = ops;
  213. return ops;
  214. }
  215. static rt_ubase_t dma_pool_alloc(struct rt_dma_pool *pool, rt_size_t size)
  216. {
  217. rt_size_t bit, next_bit, end_bit, max_bits;
  218. size = RT_DIV_ROUND_UP(size, ARCH_PAGE_SIZE);
  219. max_bits = pool->bits - size;
  220. rt_bitmap_for_each_clear_bit(pool->map, bit, max_bits)
  221. {
  222. end_bit = bit + size;
  223. for (next_bit = bit + 1; next_bit < end_bit; ++next_bit)
  224. {
  225. if (rt_bitmap_test_bit(pool->map, next_bit))
  226. {
  227. bit = next_bit;
  228. goto _next;
  229. }
  230. }
  231. if (next_bit == end_bit)
  232. {
  233. while (next_bit --> bit)
  234. {
  235. rt_bitmap_set_bit(pool->map, next_bit);
  236. }
  237. LOG_D("%s offset = %p, pages = %d", "Alloc",
  238. pool->start + bit * ARCH_PAGE_SIZE, size);
  239. return pool->start + bit * ARCH_PAGE_SIZE;
  240. }
  241. _next:
  242. ;
  243. }
  244. return RT_NULL;
  245. }
  246. static void dma_pool_free(struct rt_dma_pool *pool, rt_ubase_t offset, rt_size_t size)
  247. {
  248. rt_size_t bit = (offset - pool->start) / ARCH_PAGE_SIZE, end_bit;
  249. size = RT_DIV_ROUND_UP(size, ARCH_PAGE_SIZE);
  250. end_bit = bit + size;
  251. for (; bit < end_bit; ++bit)
  252. {
  253. rt_bitmap_clear_bit(pool->map, bit);
  254. }
  255. LOG_D("%s offset = %p, pages = %d", "Free", offset, size);
  256. }
  257. static void *dma_alloc(struct rt_device *dev, rt_size_t size,
  258. rt_ubase_t *dma_handle, rt_ubase_t flags)
  259. {
  260. void *dma_buffer = RT_NULL;
  261. struct rt_dma_pool *pool;
  262. region_pool_lock();
  263. rt_list_for_each_entry(pool, &dma_pool_nodes, list)
  264. {
  265. if (pool->flags & RT_DMA_F_DEVICE)
  266. {
  267. if (!(flags & RT_DMA_F_DEVICE) || pool->dev != dev)
  268. {
  269. continue;
  270. }
  271. }
  272. else if ((flags & RT_DMA_F_DEVICE))
  273. {
  274. continue;
  275. }
  276. if ((flags & RT_DMA_F_NOMAP) && !((pool->flags & RT_DMA_F_NOMAP)))
  277. {
  278. continue;
  279. }
  280. if ((flags & RT_DMA_F_32BITS) && !((pool->flags & RT_DMA_F_32BITS)))
  281. {
  282. continue;
  283. }
  284. *dma_handle = dma_pool_alloc(pool, size);
  285. if (*dma_handle && !(flags & RT_DMA_F_NOMAP))
  286. {
  287. if (flags & RT_DMA_F_NOCACHE)
  288. {
  289. dma_buffer = rt_ioremap_nocache((void *)*dma_handle, size);
  290. }
  291. else if (flags & RT_DMA_F_WT)
  292. {
  293. dma_buffer = rt_ioremap_wt((void *)*dma_handle, size);
  294. }
  295. else
  296. {
  297. dma_buffer = rt_ioremap_cached((void *)*dma_handle, size);
  298. }
  299. if (!dma_buffer)
  300. {
  301. dma_pool_free(pool, *dma_handle, size);
  302. continue;
  303. }
  304. break;
  305. }
  306. else if (*dma_handle)
  307. {
  308. dma_buffer = (void *)*dma_handle;
  309. break;
  310. }
  311. }
  312. region_pool_unlock();
  313. return dma_buffer;
  314. }
  315. static void dma_free(struct rt_device *dev, rt_size_t size,
  316. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
  317. {
  318. struct rt_dma_pool *pool;
  319. region_pool_lock();
  320. rt_list_for_each_entry(pool, &dma_pool_nodes, list)
  321. {
  322. if (dma_handle >= pool->region.start &&
  323. dma_handle <= pool->region.end)
  324. {
  325. rt_iounmap(cpu_addr);
  326. dma_pool_free(pool, dma_handle, size);
  327. break;
  328. }
  329. }
  330. region_pool_unlock();
  331. }
  332. void *rt_dma_alloc(struct rt_device *dev, rt_size_t size,
  333. rt_ubase_t *dma_handle, rt_ubase_t flags)
  334. {
  335. void *dma_buffer = RT_NULL;
  336. rt_ubase_t dma_handle_s = 0;
  337. const struct rt_dma_map_ops *ops;
  338. if (!dev || !size)
  339. {
  340. return RT_NULL;
  341. }
  342. ops = device_dma_ops(dev);
  343. if (ops->alloc)
  344. {
  345. dma_buffer = ops->alloc(dev, size, &dma_handle_s, flags);
  346. }
  347. else
  348. {
  349. dma_buffer = dma_alloc(dev, size, &dma_handle_s, flags);
  350. }
  351. if (!dma_buffer)
  352. {
  353. return dma_buffer;
  354. }
  355. if (dma_handle)
  356. {
  357. *dma_handle = dma_handle_s;
  358. }
  359. return dma_buffer;
  360. }
  361. void rt_dma_free(struct rt_device *dev, rt_size_t size,
  362. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
  363. {
  364. const struct rt_dma_map_ops *ops;
  365. if (!dev || !size || !cpu_addr)
  366. {
  367. return;
  368. }
  369. ops = device_dma_ops(dev);
  370. if (ops->free)
  371. {
  372. ops->free(dev, size, cpu_addr, dma_handle, flags);
  373. }
  374. else
  375. {
  376. dma_free(dev, size, cpu_addr, dma_handle, flags);
  377. }
  378. }
  379. rt_err_t rt_dma_sync_out_data(struct rt_device *dev, void *data, rt_size_t size,
  380. rt_ubase_t *dma_handle, rt_ubase_t flags)
  381. {
  382. rt_err_t err;
  383. rt_ubase_t dma_handle_s = 0;
  384. const struct rt_dma_map_ops *ops;
  385. if (!data || !size)
  386. {
  387. return -RT_EINVAL;
  388. }
  389. ops = device_dma_ops(dev);
  390. err = ops->sync_out_data(dev, data, size, &dma_handle_s, flags);
  391. if (dma_handle)
  392. {
  393. *dma_handle = dma_handle_s;
  394. }
  395. return err;
  396. }
  397. rt_err_t rt_dma_sync_in_data(struct rt_device *dev, void *out_data, rt_size_t size,
  398. rt_ubase_t dma_handle, rt_ubase_t flags)
  399. {
  400. rt_err_t err;
  401. const struct rt_dma_map_ops *ops;
  402. if (!out_data || !size)
  403. {
  404. return -RT_EINVAL;
  405. }
  406. ops = device_dma_ops(dev);
  407. err = ops->sync_in_data(dev, out_data, size, dma_handle, flags);
  408. return err;
  409. }
  410. static struct rt_dma_pool *dma_pool_install(rt_region_t *region)
  411. {
  412. rt_err_t err;
  413. struct rt_dma_pool *pool;
  414. if (!(pool = rt_calloc(1, sizeof(*pool))))
  415. {
  416. LOG_E("Install pool[%p, %p] error = %s",
  417. region->start, region->end, rt_strerror(-RT_ENOMEM));
  418. return RT_NULL;
  419. }
  420. rt_memcpy(&pool->region, region, sizeof(*region));
  421. pool->flags |= RT_DMA_F_LINEAR;
  422. if (region->end < 4UL * SIZE_GB)
  423. {
  424. pool->flags |= RT_DMA_F_32BITS;
  425. }
  426. pool->start = RT_ALIGN(pool->region.start, ARCH_PAGE_SIZE);
  427. pool->bits = (pool->region.end - pool->start) / ARCH_PAGE_SIZE;
  428. if (!pool->bits)
  429. {
  430. err = -RT_EINVAL;
  431. goto _fail;
  432. }
  433. pool->map = rt_calloc(RT_BITMAP_LEN(pool->bits), sizeof(*pool->map));
  434. if (!pool->map)
  435. {
  436. err = -RT_ENOMEM;
  437. goto _fail;
  438. }
  439. rt_list_init(&pool->list);
  440. region_pool_lock();
  441. rt_list_insert_before(&dma_pool_nodes, &pool->list);
  442. region_pool_unlock();
  443. return pool;
  444. _fail:
  445. rt_free(pool);
  446. LOG_E("Install pool[%p, %p] error = %s",
  447. region->start, region->end, rt_strerror(err));
  448. return RT_NULL;
  449. }
  450. struct rt_dma_pool *rt_dma_pool_install(rt_region_t *region)
  451. {
  452. struct rt_dma_pool *pool;
  453. if (!region)
  454. {
  455. return RT_NULL;
  456. }
  457. if ((pool = dma_pool_install(region)))
  458. {
  459. region = &pool->region;
  460. LOG_I("%s: Reserved %u.%u MiB at %p",
  461. region->name,
  462. (region->end - region->start) / SIZE_MB,
  463. (region->end - region->start) / SIZE_KB & (SIZE_KB - 1),
  464. region->start);
  465. }
  466. return pool;
  467. }
  468. rt_err_t rt_dma_pool_extract(rt_size_t cma_size, rt_size_t coherent_pool_size)
  469. {
  470. struct rt_dma_pool *pool;
  471. struct rt_mmblk_reg *reg, *reg_high;
  472. struct rt_memblock *memblock = rt_memblock_get_reserved();
  473. rt_region_t *region, *region_high = RT_NULL, cma, coherent_pool;
  474. if (!memblock)
  475. {
  476. return -RT_ENOSYS;
  477. }
  478. /* Coherent pool is included in CMA */
  479. if (cma_size < coherent_pool_size)
  480. {
  481. return -RT_EINVAL;
  482. }
  483. rt_slist_for_each_entry(reg, &memblock->reg_list, node)
  484. {
  485. if (!reg->alloc || (reg->flags & MEMBLOCK_HOTPLUG))
  486. {
  487. continue;
  488. }
  489. region = &reg->memreg;
  490. if (rt_strcmp(region->name, "dma-pool") || !reg->memreg.name)
  491. {
  492. continue;
  493. }
  494. /* Always use low address in 4G */
  495. if (region->end - region->start >= cma_size)
  496. {
  497. if ((rt_ssize_t)((4UL * SIZE_GB) - region->start) < cma_size)
  498. {
  499. region_high = region;
  500. reg_high = reg;
  501. continue;
  502. }
  503. goto _found;
  504. }
  505. }
  506. if (region_high)
  507. {
  508. region = region_high;
  509. reg = reg_high;
  510. LOG_W("No available DMA zone in 4G");
  511. goto _found;
  512. }
  513. return -RT_EEMPTY;
  514. _found:
  515. if (region->end - region->start != cma_size)
  516. {
  517. cma.start = region->start;
  518. cma.end = cma.start + cma_size;
  519. }
  520. else
  521. {
  522. rt_memcpy(&cma, region, sizeof(cma));
  523. }
  524. coherent_pool.name = "coherent-pool";
  525. coherent_pool.start = cma.start;
  526. coherent_pool.end = coherent_pool.start + coherent_pool_size;
  527. cma.name = "cma";
  528. cma.start += coherent_pool_size;
  529. if (!(pool = rt_dma_pool_install(&coherent_pool)))
  530. {
  531. return -RT_ENOMEM;
  532. }
  533. /* Use: CMA > coherent-pool */
  534. if (!(pool = rt_dma_pool_install(&cma)))
  535. {
  536. return -RT_ENOMEM;
  537. }
  538. reg->alloc = RT_FALSE;
  539. return RT_EOK;
  540. }
  541. #if defined(RT_USING_CONSOLE) && defined(RT_USING_MSH)
  542. static int list_dma_pool(int argc, char**argv)
  543. {
  544. int count = 0;
  545. rt_region_t *region;
  546. struct rt_dma_pool *pool;
  547. rt_kprintf("%-*.s Region\n", RT_NAME_MAX, "Name");
  548. region_pool_lock();
  549. rt_list_for_each_entry(pool, &dma_pool_nodes, list)
  550. {
  551. region = &pool->region;
  552. rt_kprintf("%-*.s [%p, %p]\n", RT_NAME_MAX, region->name,
  553. region->start, region->end);
  554. ++count;
  555. }
  556. rt_kprintf("%d DMA memory found\n", count);
  557. region_pool_unlock();
  558. return 0;
  559. }
  560. MSH_CMD_EXPORT(list_dma_pool, dump all dma memory pool);
  561. #endif /* RT_USING_CONSOLE && RT_USING_MSH */