|
|
@@ -0,0 +1,702 @@
|
|
|
+/*
|
|
|
+ * SPDX-FileCopyrightText: 2006-2016 Matthew Conte
|
|
|
+ *
|
|
|
+ * SPDX-License-Identifier: BSD-3-Clause
|
|
|
+ */
|
|
|
+
|
|
|
+#include <string.h>
|
|
|
+#include <limits.h>
|
|
|
+#include <stdio.h>
|
|
|
+#include <stdint.h>
|
|
|
+#include "tlsf.h"
|
|
|
+
|
|
|
+#undef printf
|
|
|
+#define printf(...)
|
|
|
+
|
|
|
+#include "tlsf_block_functions.h"
|
|
|
+#include "tlsf_control_functions.h"
|
|
|
+
|
|
|
+/*
|
|
|
+** Static assertion mechanism.
|
|
|
+*/
|
|
|
+
|
|
|
+#define _tlsf_glue2(x, y) x##y
|
|
|
+#define _tlsf_glue(x, y) _tlsf_glue2(x, y)
|
|
|
+#define tlsf_static_assert(exp) typedef char _tlsf_glue(static_assert, __LINE__)[(exp) ? 1 : -1]
|
|
|
+
|
|
|
+/* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */
|
|
|
+tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
|
|
|
+tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
|
|
|
+tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
|
|
|
+
|
|
|
+/* Clear structure and point all empty lists at the null block. */
|
|
|
+static control_t *control_construct(control_t *control, size_t bytes)
|
|
|
+{
|
|
|
+ // check that the requested size can at least hold the control_t. This will allow us
|
|
|
+ // to fill in the field of control_t necessary to determine the final size of
|
|
|
+ // the metadata overhead and check that the requested size can hold
|
|
|
+ // this data and at least a block of minimum size
|
|
|
+ if (bytes < sizeof(control_t)) { return NULL; }
|
|
|
+
|
|
|
+ /* Find the closest power of two for first layer */
|
|
|
+ control->fl_index_max = 32 - __builtin_clz(bytes);
|
|
|
+
|
|
|
+ /* Adapt second layer to the pool */
|
|
|
+ if (bytes <= 64 * 1024) { control->sl_index_count_log2 = 3; }
|
|
|
+ else if (bytes <= 256 * 1024) { control->sl_index_count_log2 = 4; }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ control->sl_index_count_log2 = 5;
|
|
|
+ }
|
|
|
+
|
|
|
+ control->fl_index_shift = (control->sl_index_count_log2 + ALIGN_SIZE_LOG2);
|
|
|
+ control->sl_index_count = 1 << control->sl_index_count_log2;
|
|
|
+ control->fl_index_count = control->fl_index_max - control->fl_index_shift + 1;
|
|
|
+ control->small_block_size = 1 << control->fl_index_shift;
|
|
|
+
|
|
|
+ // the total size fo the metadata overhead is the size of the control_t
|
|
|
+ // added to the size of the sl_bitmaps and the size of blocks
|
|
|
+ control->size = sizeof(control_t) + (sizeof(*control->sl_bitmap) * control->fl_index_count) +
|
|
|
+ (sizeof(*control->blocks) * (control->fl_index_count * control->sl_index_count));
|
|
|
+
|
|
|
+ // check that the requested size can hold the whole control structure and
|
|
|
+ // a small block at least
|
|
|
+ if (bytes < control->size + block_size_min) { return NULL; }
|
|
|
+
|
|
|
+ control->block_null.next_free = &control->block_null;
|
|
|
+ control->block_null.prev_free = &control->block_null;
|
|
|
+
|
|
|
+ control->fl_bitmap = 0;
|
|
|
+ control->sl_bitmap = align_ptr(control + 1, sizeof(*control->sl_bitmap));
|
|
|
+ control->blocks = align_ptr(control->sl_bitmap + control->fl_index_count, sizeof(*control->blocks));
|
|
|
+
|
|
|
+ /* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
|
|
|
+ tlsf_assert(sizeof(unsigned int) * CHAR_BIT >= control->sl_index_count && "CHAR_BIT less than sl_index_count");
|
|
|
+
|
|
|
+ /* Ensure we've properly tuned our sizes. */
|
|
|
+ tlsf_assert(ALIGN_SIZE == control->small_block_size / control->sl_index_count); // ALIGN_SIZE does not match");
|
|
|
+
|
|
|
+ for (int i = 0; i < control->fl_index_count; ++i)
|
|
|
+ {
|
|
|
+ control->sl_bitmap[i] = 0;
|
|
|
+ for (int j = 0; j < control->sl_index_count; ++j)
|
|
|
+ {
|
|
|
+ control->blocks[i * control->sl_index_count + j] = &control->block_null;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return control;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Debugging utilities.
|
|
|
+*/
|
|
|
+
|
|
|
+typedef struct integrity_t
|
|
|
+{
|
|
|
+ int prev_status;
|
|
|
+ int status;
|
|
|
+} integrity_t;
|
|
|
+
|
|
|
+#define tlsf_insist(x) \
|
|
|
+ { \
|
|
|
+ if (!(x)) { status--; } \
|
|
|
+ }
|
|
|
+
|
|
|
+static bool integrity_walker(void *ptr, size_t size, int used, void *user)
|
|
|
+{
|
|
|
+ block_header_t *block = block_from_ptr(ptr);
|
|
|
+ integrity_t *integ = tlsf_cast(integrity_t *, user);
|
|
|
+ const int this_prev_status = block_is_prev_free(block) ? 1 : 0;
|
|
|
+ const int this_status = block_is_free(block) ? 1 : 0;
|
|
|
+ const size_t this_block_size = block_size(block);
|
|
|
+
|
|
|
+ int status = 0;
|
|
|
+ tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect");
|
|
|
+ tlsf_insist(size == this_block_size && "block size incorrect");
|
|
|
+
|
|
|
+ if (tlsf_check_hook != NULL)
|
|
|
+ {
|
|
|
+ /* block_size(block) returns the size of the usable memory when the block is allocated.
|
|
|
+ * As the block under test is free, we need to subtract to the block size the next_free
|
|
|
+ * and prev_free fields of the block header as they are not a part of the usable memory
|
|
|
+ * when the block is free. In addition, we also need to subtract the size of prev_phys_block
|
|
|
+ * as this field is in fact part of the current free block and not part of the next (allocated)
|
|
|
+ * block. Check the comments in block_split function for more details.
|
|
|
+ */
|
|
|
+ const size_t actual_free_block_size =
|
|
|
+ used ? this_block_size : this_block_size - offsetof(block_header_t, next_free) - block_header_overhead;
|
|
|
+
|
|
|
+ void *ptr_block = used ? (void *)block + block_start_offset : (void *)block + sizeof(block_header_t);
|
|
|
+
|
|
|
+ tlsf_insist(tlsf_check_hook(ptr_block, actual_free_block_size, !used));
|
|
|
+ }
|
|
|
+
|
|
|
+ integ->prev_status = this_status;
|
|
|
+ integ->status += status;
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+int tlsf_check(tlsf_t tlsf)
|
|
|
+{
|
|
|
+ int i, j;
|
|
|
+
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ int status = 0;
|
|
|
+
|
|
|
+ /* Check that the free lists and bitmaps are accurate. */
|
|
|
+ for (i = 0; i < control->fl_index_count; ++i)
|
|
|
+ {
|
|
|
+ for (j = 0; j < control->sl_index_count; ++j)
|
|
|
+ {
|
|
|
+ const int fl_map = control->fl_bitmap & (1U << i);
|
|
|
+ const int sl_list = control->sl_bitmap[i];
|
|
|
+ const int sl_map = sl_list & (1U << j);
|
|
|
+ const block_header_t *block = control->blocks[i * control->sl_index_count + j];
|
|
|
+
|
|
|
+ /* Check that first- and second-level lists agree. */
|
|
|
+ if (!fl_map) { tlsf_insist(!sl_map && "second-level map must be null"); }
|
|
|
+
|
|
|
+ if (!sl_map)
|
|
|
+ {
|
|
|
+ tlsf_insist(block == &control->block_null && "block list must be null");
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Check that there is at least one free block. */
|
|
|
+ tlsf_insist(sl_list && "no free blocks in second-level map");
|
|
|
+ tlsf_insist(block != &control->block_null && "block should not be null");
|
|
|
+
|
|
|
+ while (block != &control->block_null)
|
|
|
+ {
|
|
|
+ int fli, sli;
|
|
|
+ const bool is_block_free = block_is_free(block);
|
|
|
+ tlsf_insist(is_block_free && "block should be free");
|
|
|
+ tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced");
|
|
|
+ tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced");
|
|
|
+ tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
|
|
|
+ tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
|
|
|
+
|
|
|
+ mapping_insert(control, block_size(block), &fli, &sli);
|
|
|
+ tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
|
|
|
+
|
|
|
+ block = block->next_free;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+#undef tlsf_insist
|
|
|
+
|
|
|
+static bool default_walker(void *ptr, size_t size, int used, void *user)
|
|
|
+{
|
|
|
+ (void)user;
|
|
|
+ printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, block_from_ptr(ptr));
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+void tlsf_walk_pool(pool_t pool, tlsf_walker walker, void *user)
|
|
|
+{
|
|
|
+ tlsf_walker pool_walker = walker ? walker : default_walker;
|
|
|
+ block_header_t *block = offset_to_block(pool, -(int)block_header_overhead);
|
|
|
+
|
|
|
+ bool ret_val = true;
|
|
|
+ while (block && !block_is_last(block) && ret_val == true)
|
|
|
+ {
|
|
|
+ ret_val = pool_walker(block_to_ptr(block), block_size(block), !block_is_free(block), user);
|
|
|
+
|
|
|
+ if (ret_val == true) { block = block_next(block); }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+size_t tlsf_block_size(void *ptr)
|
|
|
+{
|
|
|
+ size_t size = 0;
|
|
|
+ if (ptr)
|
|
|
+ {
|
|
|
+ const block_header_t *block = block_from_ptr(ptr);
|
|
|
+ size = block_size(block);
|
|
|
+ }
|
|
|
+ return size;
|
|
|
+}
|
|
|
+
|
|
|
+int tlsf_check_pool(pool_t pool)
|
|
|
+{
|
|
|
+ /* Check that the blocks are physically correct. */
|
|
|
+ integrity_t integ = {0, 0};
|
|
|
+ tlsf_walk_pool(pool, integrity_walker, &integ);
|
|
|
+
|
|
|
+ return integ.status;
|
|
|
+}
|
|
|
+
|
|
|
+size_t tlsf_fit_size(tlsf_t tlsf, size_t size)
|
|
|
+{
|
|
|
+ if (size == 0 || tlsf == NULL) { return 0; }
|
|
|
+
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ if (size < control->small_block_size) { return adjust_request_size(tlsf, size, ALIGN_SIZE); }
|
|
|
+
|
|
|
+ /* because it's GoodFit, allocable size is one range lower */
|
|
|
+ size_t sl_interval;
|
|
|
+ sl_interval = (1 << (32 - __builtin_clz(size) - 1)) / control->sl_index_count;
|
|
|
+ return size & ~(sl_interval - 1);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Size of the TLSF structures in a given memory block passed to
|
|
|
+** tlsf_create, equal to the size of a control_t
|
|
|
+*/
|
|
|
+size_t tlsf_size(tlsf_t tlsf)
|
|
|
+{
|
|
|
+ if (tlsf == NULL) { return 0; }
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ return control->size;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Overhead of the TLSF structures in a given memory block passed to
|
|
|
+** tlsf_add_pool, equal to the overhead of a free block and the
|
|
|
+** sentinel block.
|
|
|
+*/
|
|
|
+size_t tlsf_pool_overhead(void) { return 2 * block_header_overhead; }
|
|
|
+
|
|
|
+size_t tlsf_alloc_overhead(void) { return block_header_overhead; }
|
|
|
+
|
|
|
+pool_t tlsf_add_pool(tlsf_t tlsf, void *mem, size_t bytes)
|
|
|
+{
|
|
|
+ block_header_t *block;
|
|
|
+ block_header_t *next;
|
|
|
+
|
|
|
+ const size_t pool_overhead = tlsf_pool_overhead();
|
|
|
+ const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE);
|
|
|
+
|
|
|
+ if (((ptrdiff_t)mem % ALIGN_SIZE) != 0)
|
|
|
+ {
|
|
|
+ printf("tlsf_add_pool: Memory must be aligned by %u bytes.\n", (unsigned int)ALIGN_SIZE);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (pool_bytes < block_size_min || pool_bytes > tlsf_block_size_max(tlsf))
|
|
|
+ {
|
|
|
+#if defined(TLSF_64BIT)
|
|
|
+ printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
|
|
|
+ (unsigned int)(pool_overhead + block_size_min), (unsigned int)((pool_overhead + tlsf_block_size_max(tlsf)) / 256));
|
|
|
+#else
|
|
|
+ printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n", (unsigned int)(pool_overhead + block_size_min),
|
|
|
+ (unsigned int)(pool_overhead + tlsf_block_size_max(tlsf)));
|
|
|
+#endif
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ ** Create the main free block. Offset the start of the block slightly
|
|
|
+ ** so that the prev_phys_block field falls outside of the pool -
|
|
|
+ ** it will never be used.
|
|
|
+ */
|
|
|
+ block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
|
|
|
+ block_set_size(block, pool_bytes);
|
|
|
+ block_set_free(block);
|
|
|
+ block_set_prev_used(block);
|
|
|
+ block_insert(tlsf_cast(control_t *, tlsf), block);
|
|
|
+
|
|
|
+ /* Split the block to create a zero-size sentinel block. */
|
|
|
+ next = block_link_next(block);
|
|
|
+ block_set_size(next, 0);
|
|
|
+ block_set_used(next);
|
|
|
+ block_set_prev_free(next);
|
|
|
+
|
|
|
+ return mem;
|
|
|
+}
|
|
|
+
|
|
|
+void tlsf_remove_pool(tlsf_t tlsf, pool_t pool)
|
|
|
+{
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ block_header_t *block = offset_to_block(pool, -(int)block_header_overhead);
|
|
|
+
|
|
|
+ int fl = 0, sl = 0;
|
|
|
+
|
|
|
+ tlsf_assert(block_is_free(block) && "block should be free");
|
|
|
+ tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
|
|
|
+ tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
|
|
|
+
|
|
|
+ mapping_insert(control, block_size(block), &fl, &sl);
|
|
|
+ remove_free_block(control, block, fl, sl);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** TLSF main interface.
|
|
|
+*/
|
|
|
+
|
|
|
+#if _DEBUG
|
|
|
+int test_ffs_fls()
|
|
|
+{
|
|
|
+ /* Verify ffs/fls work properly. */
|
|
|
+ int rv = 0;
|
|
|
+ rv += (tlsf_ffs(0) == -1) ? 0 : 0x1;
|
|
|
+ rv += (tlsf_fls(0) == -1) ? 0 : 0x2;
|
|
|
+ rv += (tlsf_ffs(1) == 0) ? 0 : 0x4;
|
|
|
+ rv += (tlsf_fls(1) == 0) ? 0 : 0x8;
|
|
|
+ rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10;
|
|
|
+ rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20;
|
|
|
+ rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40;
|
|
|
+ rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80;
|
|
|
+
|
|
|
+#if defined(TLSF_64BIT)
|
|
|
+ rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100;
|
|
|
+ rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200;
|
|
|
+ rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400;
|
|
|
+#endif
|
|
|
+
|
|
|
+ if (rv) { printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv); }
|
|
|
+ return rv;
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+tlsf_t tlsf_create(void *mem, size_t max_bytes)
|
|
|
+{
|
|
|
+#if _DEBUG
|
|
|
+ if (test_ffs_fls()) { return NULL; }
|
|
|
+#endif
|
|
|
+
|
|
|
+ if (mem == NULL) { return NULL; }
|
|
|
+
|
|
|
+ if (((tlsfptr_t)mem % ALIGN_SIZE) != 0)
|
|
|
+ {
|
|
|
+ printf("tlsf_create: Memory must be aligned to %u bytes.\n", (unsigned int)ALIGN_SIZE);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ control_t *control_ptr = control_construct(tlsf_cast(control_t *, mem), max_bytes);
|
|
|
+ return tlsf_cast(tlsf_t, control_ptr);
|
|
|
+}
|
|
|
+
|
|
|
+tlsf_t tlsf_create_with_pool(void *mem, size_t pool_bytes, size_t max_bytes)
|
|
|
+{
|
|
|
+ tlsf_t tlsf = tlsf_create(mem, max_bytes ? max_bytes : pool_bytes);
|
|
|
+ if (tlsf != NULL)
|
|
|
+ {
|
|
|
+ tlsf_add_pool(tlsf, (char *)mem + tlsf_size(tlsf), pool_bytes - tlsf_size(tlsf));
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ control->mem_rec.total = pool_bytes - tlsf_size(tlsf) - tlsf_pool_overhead();
|
|
|
+ control->mem_rec.used = 0;
|
|
|
+ control->mem_rec.max_used = 0;
|
|
|
+ }
|
|
|
+ return tlsf;
|
|
|
+}
|
|
|
+
|
|
|
+void tlsf_destroy(tlsf_t tlsf)
|
|
|
+{
|
|
|
+ /* Nothing to do. */
|
|
|
+ (void)tlsf;
|
|
|
+}
|
|
|
+
|
|
|
+pool_t tlsf_get_pool(tlsf_t tlsf) { return tlsf_cast(pool_t, (char *)tlsf + tlsf_size(tlsf)); }
|
|
|
+
|
|
|
+void *tlsf_malloc(tlsf_t tlsf, size_t size)
|
|
|
+{
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
|
|
|
+ // Returned size is 0 when the requested size is larger than the max block
|
|
|
+ // size.
|
|
|
+ if (adjust == 0) { return NULL; }
|
|
|
+ // block_locate_free() may adjust our allocated size further.
|
|
|
+ block_header_t *block = block_locate_free(control, &adjust);
|
|
|
+ return block_prepare_used(control, block, adjust);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief Allocate memory of at least `size` bytes at a given address in the pool.
|
|
|
+ *
|
|
|
+ * @param tlsf TLSF structure to allocate memory from.
|
|
|
+ * @param size Minimum size, in bytes, of the memory to allocate
|
|
|
+ * @param address address at which the allocation must be done
|
|
|
+ *
|
|
|
+ * @return pointer to free memory or NULL in case of incapacity to perform the malloc
|
|
|
+ */
|
|
|
+void *tlsf_malloc_addr(tlsf_t tlsf, size_t size, void *address)
|
|
|
+{
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+
|
|
|
+ /* adjust the address to be ALIGN_SIZE bytes aligned. */
|
|
|
+ const uintptr_t addr_adjusted = align_down(tlsf_cast(uintptr_t, address), ALIGN_SIZE);
|
|
|
+
|
|
|
+ /* adjust the size to be ALIGN_SIZE bytes aligned. Add to the size the difference
|
|
|
+ * between the requested address and the address_adjusted. */
|
|
|
+ size_t size_adjusted = align_up(size + (tlsf_cast(uintptr_t, address) - addr_adjusted), ALIGN_SIZE);
|
|
|
+
|
|
|
+ /* find the free block that starts before the address in the pool and is big enough
|
|
|
+ * to support the size of allocation at the given address */
|
|
|
+ block_header_t *block = offset_to_block(tlsf_get_pool(tlsf), -(int)block_header_overhead);
|
|
|
+
|
|
|
+ const char *alloc_start = tlsf_cast(char *, addr_adjusted);
|
|
|
+ const char *alloc_end = alloc_start + size_adjusted;
|
|
|
+ bool block_found = false;
|
|
|
+ do
|
|
|
+ {
|
|
|
+ const char *block_start = tlsf_cast(char *, block_to_ptr(block));
|
|
|
+ const char *block_end = tlsf_cast(char *, block_to_ptr(block)) + block_size(block);
|
|
|
+ if (block_start <= alloc_start && block_end > alloc_start)
|
|
|
+ {
|
|
|
+ /* A: block_end >= alloc_end. B: block is free */
|
|
|
+ if (block_end < alloc_end || !block_is_free(block))
|
|
|
+ {
|
|
|
+ /* not(A) || not(B)
|
|
|
+ * We won't find another suitable block from this point on
|
|
|
+ * so we can break and return NULL */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ /* A && B
|
|
|
+ * The block can fit the alloc and is located at a position allowing for the alloc
|
|
|
+ * to be placed at the given address. We can return from the while */
|
|
|
+ block_found = true;
|
|
|
+ }
|
|
|
+ else if (!block_is_last(block))
|
|
|
+ {
|
|
|
+ /* the block doesn't match the expected criteria, continue with the next block */
|
|
|
+ block = block_next(block);
|
|
|
+ }
|
|
|
+
|
|
|
+ } while (!block_is_last(block) && block_found == false);
|
|
|
+
|
|
|
+ if (!block_found) { return NULL; }
|
|
|
+
|
|
|
+ /* remove block from the free list since a part of it will be used */
|
|
|
+ block_remove(control, block);
|
|
|
+
|
|
|
+ /* trim any leading space or add the leading space to the overall requested size
|
|
|
+ * if the leading space is not big enough to store a block of minimum size */
|
|
|
+ const size_t space_before_addr_adjusted = addr_adjusted - tlsf_cast(uintptr_t, block_to_ptr(block));
|
|
|
+ block_header_t *return_block = block;
|
|
|
+ if (space_before_addr_adjusted >= block_size_min)
|
|
|
+ {
|
|
|
+ return_block = block_trim_free_leading(control, block, space_before_addr_adjusted);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ size_adjusted += space_before_addr_adjusted;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* trim trailing space if any and return a pointer to the first usable byte allocated */
|
|
|
+ return block_prepare_used(control, return_block, size_adjusted);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief Allocate memory of at least `size` bytes where byte at `data_offset` will be aligned to `alignment`.
|
|
|
+ *
|
|
|
+ * This function will allocate memory pointed by `ptr`. However, the byte at `data_offset` of
|
|
|
+ * this piece of memory (i.e., byte at `ptr` + `data_offset`) will be aligned to `alignment`.
|
|
|
+ * This function is useful for allocating memory that will internally have a header, and the
|
|
|
+ * usable memory following the header (i.e. `ptr` + `data_offset`) must be aligned.
|
|
|
+ *
|
|
|
+ * For example, a call to `multi_heap_aligned_alloc_impl_offs(heap, 64, 256, 20)` will return a
|
|
|
+ * pointer `ptr` to free memory of minimum 64 bytes, where `ptr + 20` is aligned on `256`.
|
|
|
+ * So `(ptr + 20) % 256` equals 0.
|
|
|
+ *
|
|
|
+ * @param tlsf TLSF structure to allocate memory from.
|
|
|
+ * @param align Alignment for the returned pointer's offset.
|
|
|
+ * @param size Minimum size, in bytes, of the memory to allocate INCLUDING
|
|
|
+ * `data_offset` bytes.
|
|
|
+ * @param data_offset Offset to be aligned on `alignment`. This can be 0, in
|
|
|
+ * this case, the returned pointer will be aligned on
|
|
|
+ * `alignment`. If it is not a multiple of CPU word size,
|
|
|
+ * it will be aligned up to the closest multiple of it.
|
|
|
+ *
|
|
|
+ * @return pointer to free memory.
|
|
|
+ */
|
|
|
+void *tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_offset)
|
|
|
+{
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
|
|
|
+ const size_t off_adjust = align_up(data_offset, ALIGN_SIZE);
|
|
|
+
|
|
|
+ /*
|
|
|
+ ** We must allocate an additional minimum block size bytes so that if
|
|
|
+ ** our free block will leave an alignment gap which is smaller, we can
|
|
|
+ ** trim a leading free block and release it back to the pool. We must
|
|
|
+ ** do this because the previous physical block is in use, therefore
|
|
|
+ ** the prev_phys_block field is not valid, and we can't simply adjust
|
|
|
+ ** the size of that block.
|
|
|
+ */
|
|
|
+ const size_t gap_minimum = sizeof(block_header_t) + off_adjust;
|
|
|
+ /* The offset is included in both `adjust` and `gap_minimum`, so we
|
|
|
+ ** need to subtract it once.
|
|
|
+ */
|
|
|
+ const size_t size_with_gap = adjust_request_size(tlsf, adjust + align + gap_minimum - off_adjust, align);
|
|
|
+
|
|
|
+ /*
|
|
|
+ ** If alignment is less than or equal to base alignment, we're done, because
|
|
|
+ ** we are guaranteed that the size is at least sizeof(block_header_t), enough
|
|
|
+ ** to store next blocks' metadata. Plus, all pointers allocated will all be
|
|
|
+ ** aligned on a 4-byte bound, so ptr + data_offset will also have this
|
|
|
+ ** alignment constraint. Thus, the gap is not required.
|
|
|
+ ** If we requested 0 bytes, return null, as tlsf_malloc(0) does.
|
|
|
+ */
|
|
|
+ size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;
|
|
|
+
|
|
|
+ block_header_t *block = block_locate_free(control, &aligned_size);
|
|
|
+
|
|
|
+ /* This can't be a static assert. */
|
|
|
+ tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);
|
|
|
+
|
|
|
+ if (block)
|
|
|
+ {
|
|
|
+ void *ptr = block_to_ptr(block);
|
|
|
+ void *aligned = align_ptr(ptr, align);
|
|
|
+ size_t gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
|
|
|
+
|
|
|
+ /*
|
|
|
+ ** If gap size is too small or if there is no gap but we need one,
|
|
|
+ ** offset to next aligned boundary.
|
|
|
+ ** NOTE: No need for a gap if the alignment required is less than or is
|
|
|
+ ** equal to ALIGN_SIZE.
|
|
|
+ */
|
|
|
+ if ((gap && gap < gap_minimum) || (!gap && off_adjust && align > ALIGN_SIZE))
|
|
|
+ {
|
|
|
+ const size_t gap_remain = gap_minimum - gap;
|
|
|
+ const size_t offset = tlsf_max(gap_remain, align);
|
|
|
+ const void *next_aligned = tlsf_cast(void *, tlsf_cast(tlsfptr_t, aligned) + offset);
|
|
|
+
|
|
|
+ aligned = align_ptr(next_aligned, align);
|
|
|
+ gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (gap)
|
|
|
+ {
|
|
|
+ tlsf_assert(gap >= gap_minimum && "gap size too small");
|
|
|
+ block = block_trim_free_leading(control, block, gap - off_adjust);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Preparing the block will also the trailing free memory. */
|
|
|
+ return block_prepare_used(control, block, adjust);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief Same as `tlsf_memalign_offs` function but with a 0 offset.
|
|
|
+ * The pointer returned is aligned on `align`.
|
|
|
+ */
|
|
|
+void *tlsf_memalign(tlsf_t tlsf, size_t align, size_t size) { return tlsf_memalign_offs(tlsf, align, size, 0); }
|
|
|
+void rt_memory_info22(tlsf_t tlsf, size_t *total, size_t *used, size_t *max_used)
|
|
|
+{
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ if (total) { *total = control->mem_rec.total; }
|
|
|
+ if (used) { *used = control->mem_rec.used; }
|
|
|
+ if (max_used) { *max_used = control->mem_rec.max_used; }
|
|
|
+}
|
|
|
+void tlsf_free(tlsf_t tlsf, void *ptr)
|
|
|
+{
|
|
|
+ /* Don't attempt to free a NULL pointer. */
|
|
|
+ if (ptr)
|
|
|
+ {
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ block_header_t *block = block_from_ptr(ptr);
|
|
|
+ tlsf_assert(!block_is_free(block) && "block already marked as free");
|
|
|
+
|
|
|
+ control->mem_rec.used -= (block_size(block) + tlsf_alloc_overhead());
|
|
|
+
|
|
|
+ block_mark_as_free(block);
|
|
|
+ block = block_merge_prev(control, block);
|
|
|
+ block = block_merge_next(control, block);
|
|
|
+ block_insert(control, block);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** The TLSF block information provides us with enough information to
|
|
|
+** provide a reasonably intelligent implementation of realloc, growing or
|
|
|
+** shrinking the currently allocated block as required.
|
|
|
+**
|
|
|
+** This routine handles the somewhat esoteric edge cases of realloc:
|
|
|
+** - a non-zero size with a null pointer will behave like malloc
|
|
|
+** - a zero size with a non-null pointer will behave like free
|
|
|
+** - a request that cannot be satisfied will leave the original buffer
|
|
|
+** untouched
|
|
|
+** - an extended buffer size will leave the newly-allocated area with
|
|
|
+** contents undefined
|
|
|
+*/
|
|
|
+void *tlsf_realloc(tlsf_t tlsf, void *ptr, size_t size)
|
|
|
+{
|
|
|
+ control_t *control = tlsf_cast(control_t *, tlsf);
|
|
|
+ void *p = 0;
|
|
|
+
|
|
|
+ /* Zero-size requests are treated as free. */
|
|
|
+ if (ptr && size == 0) { tlsf_free(tlsf, ptr); }
|
|
|
+ /* Requests with NULL pointers are treated as malloc. */
|
|
|
+ else if (!ptr) { p = tlsf_malloc(tlsf, size); }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ block_header_t *block = block_from_ptr(ptr);
|
|
|
+ block_header_t *next = block_next(block);
|
|
|
+
|
|
|
+ const size_t cursize = block_size(block);
|
|
|
+ const size_t combined = cursize + block_size(next) + block_header_overhead;
|
|
|
+ const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
|
|
|
+
|
|
|
+ // if adjust if equal to 0, the size is too big
|
|
|
+ if (adjust == 0) { return p; }
|
|
|
+
|
|
|
+ tlsf_assert(!block_is_free(block) && "block already marked as free");
|
|
|
+
|
|
|
+ /*
|
|
|
+ ** If the next block is used, or when combined with the current
|
|
|
+ ** block, does not offer enough space, we must reallocate and copy.
|
|
|
+ */
|
|
|
+ if (adjust > cursize && (!block_is_free(next) || adjust > combined))
|
|
|
+ {
|
|
|
+ p = tlsf_malloc(tlsf, size);
|
|
|
+ if (p)
|
|
|
+ {
|
|
|
+ const size_t minsize = tlsf_min(cursize, size);
|
|
|
+ rt_memcpy(p, ptr, minsize);
|
|
|
+ tlsf_free(tlsf, ptr);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* Do we need to expand to the next block? */
|
|
|
+ if (adjust > cursize)
|
|
|
+ {
|
|
|
+ block_merge_next(control, block);
|
|
|
+ block_mark_as_used(block);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Trim the resulting block and return the original pointer. */
|
|
|
+ block_trim_used(control, block, adjust);
|
|
|
+ p = ptr;
|
|
|
+
|
|
|
+ /* 更新统计信息:原地调整时需要修正 used */
|
|
|
+ control->mem_rec.used += block_size(block);
|
|
|
+ control->mem_rec.used -= cursize;
|
|
|
+
|
|
|
+ if(control->mem_rec.used > control->mem_rec.max_used)
|
|
|
+ control->mem_rec.max_used = control->mem_rec.used;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
+void *tlsf_find_containing_block(pool_t pool, void *ptr)
|
|
|
+{
|
|
|
+ block_header_t *block = offset_to_block(pool, -(int)block_header_overhead);
|
|
|
+
|
|
|
+ while (block && !block_is_last(block))
|
|
|
+ {
|
|
|
+ if (!block_is_free(block))
|
|
|
+ {
|
|
|
+ void *block_end = block_to_ptr(block) + block_size(block);
|
|
|
+ if (block_to_ptr(block) <= ptr && block_end > ptr)
|
|
|
+ {
|
|
|
+ // we found the containing block, return
|
|
|
+ return block_to_ptr(block);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ block = block_next(block);
|
|
|
+ }
|
|
|
+
|
|
|
+ return NULL;
|
|
|
+}
|