Przeglądaj źródła

Removed whitespace and fixed some comments

Also reset angle in the constructor
Kristian Sloth Lauszus 12 lat temu
rodzic
commit
67f9f31f6d
1 zmienionych plików z 24 dodań i 22 usunięć
  1. 24 22
      Kalman.h

+ 24 - 22
Kalman.h

@@ -1,15 +1,15 @@
 /* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
- 
+
  This software may be distributed and modified under the terms of the GNU
  General Public License version 2 (GPL2) as published by the Free Software
  Foundation and appearing in the file GPL2.TXT included in the packaging of
  this file. Please note that GPL2 Section 2[b] requires that all works based
  on this software must also be made publicly available under the terms of
  the GPL2 ("Copyleft").
- 
+
  Contact information
  -------------------
- 
+
  Kristian Lauszus, TKJ Electronics
  Web      :  http://www.tkjelectronics.com
  e-mail   :  kristianl@tkjelectronics.com
@@ -21,13 +21,15 @@
 class Kalman {
 public:
     Kalman() {
-        /* We will set the varibles like so, these can also be tuned by the user */
+        /* We will set the variables like so, these can also be tuned by the user */
         Q_angle = 0.001;
         Q_bias = 0.003;
         R_measure = 0.03;
-        
+
+        angle = 0; // Reset the angle
         bias = 0; // Reset bias
-        P[0][0] = 0; // Since we assume tha the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
+
+        P[0][0] = 0; // Since we assume that the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
         P[0][1] = 0;
         P[1][0] = 0;
         P[1][1] = 0;
@@ -37,20 +39,20 @@ public:
         // KasBot V2  -  Kalman filter module - http://www.x-firm.com/?page_id=145
         // Modified by Kristian Lauszus
         // See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it
-                        
+
         // Discrete Kalman filter time update equations - Time Update ("Predict")
         // Update xhat - Project the state ahead
         /* Step 1 */
         rate = newRate - bias;
         angle += dt * rate;
-        
+
         // Update estimation error covariance - Project the error covariance ahead
         /* Step 2 */
         P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle);
         P[0][1] -= dt * P[1][1];
         P[1][0] -= dt * P[1][1];
         P[1][1] += Q_bias * dt;
-        
+
         // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
         // Calculate Kalman gain - Compute the Kalman gain
         /* Step 4 */
@@ -58,49 +60,49 @@ public:
         /* Step 5 */
         K[0] = P[0][0] / S;
         K[1] = P[1][0] / S;
-        
+
         // Calculate angle and bias - Update estimate with measurement zk (newAngle)
         /* Step 3 */
         y = newAngle - angle;
         /* Step 6 */
         angle += K[0] * y;
         bias += K[1] * y;
-        
+
         // Calculate estimation error covariance - Update the error covariance
         /* Step 7 */
         P[0][0] -= K[0] * P[0][0];
         P[0][1] -= K[0] * P[0][1];
         P[1][0] -= K[1] * P[0][0];
         P[1][1] -= K[1] * P[0][1];
-        
+
         return angle;
     };
     void setAngle(double newAngle) { angle = newAngle; }; // Used to set angle, this should be set as the starting angle
     double getRate() { return rate; }; // Return the unbiased rate
-    
+
     /* These are used to tune the Kalman filter */
     void setQangle(double newQ_angle) { Q_angle = newQ_angle; };
     void setQbias(double newQ_bias) { Q_bias = newQ_bias; };
     void setRmeasure(double newR_measure) { R_measure = newR_measure; };
-    
+
     double getQangle() { return Q_angle; };
     double getQbias() { return Q_bias; };
     double getRmeasure() { return R_measure; };
-    
+
 private:
     /* Kalman filter variables */
     double Q_angle; // Process noise variance for the accelerometer
     double Q_bias; // Process noise variance for the gyro bias
     double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise
-    
-    double angle; // The angle calculated by the Kalman filter - part of the 2x1 state matrix
-    double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state matrix
+
+    double angle; // The angle calculated by the Kalman filter - part of the 2x1 state vector
+    double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state vector
     double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate
-    
+
     double P[2][2]; // Error covariance matrix - This is a 2x2 matrix
-    double K[2]; // Kalman gain - This is a 2x1 matrix
-    double y; // Angle difference - 1x1 matrix
-    double S; // Estimate error - 1x1 matrix
+    double K[2]; // Kalman gain - This is a 2x1 vector
+    double y; // Angle difference
+    double S; // Estimate error
 };
 
 #endif