ems_kfc.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /*
  2. * Copyright (C) 2019 Intel Corporation. All rights reserved.
  3. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  4. */
  5. #include "ems_gc_internal.h"
  6. static gc_handle_t
  7. gc_init_internal(gc_heap_t *heap, char *base_addr, gc_size_t heap_max_size)
  8. {
  9. hmu_tree_node_t *root = NULL, *q = NULL;
  10. int ret;
  11. memset(heap, 0, sizeof *heap);
  12. memset(base_addr, 0, heap_max_size);
  13. ret = os_mutex_init(&heap->lock);
  14. if (ret != BHT_OK) {
  15. LOG_ERROR("[GC_ERROR]failed to init lock\n");
  16. return NULL;
  17. }
  18. /* init all data structures*/
  19. heap->current_size = heap_max_size;
  20. heap->base_addr = (gc_uint8 *)base_addr;
  21. heap->heap_id = (gc_handle_t)heap;
  22. heap->total_free_size = heap->current_size;
  23. heap->highmark_size = 0;
  24. #if WASM_ENABLE_GC != 0
  25. heap->gc_threshold_factor = GC_DEFAULT_THRESHOLD_FACTOR;
  26. gc_update_threshold(heap);
  27. #endif
  28. root = heap->kfc_tree_root = (hmu_tree_node_t *)heap->kfc_tree_root_buf;
  29. memset(root, 0, sizeof *root);
  30. root->size = sizeof *root;
  31. hmu_set_ut(&root->hmu_header, HMU_FC);
  32. hmu_set_size(&root->hmu_header, sizeof *root);
  33. q = (hmu_tree_node_t *)heap->base_addr;
  34. memset(q, 0, sizeof *q);
  35. hmu_set_ut(&q->hmu_header, HMU_FC);
  36. hmu_set_size(&q->hmu_header, heap->current_size);
  37. ASSERT_TREE_NODE_ALIGNED_ACCESS(q);
  38. ASSERT_TREE_NODE_ALIGNED_ACCESS(root);
  39. hmu_mark_pinuse(&q->hmu_header);
  40. root->right = q;
  41. q->parent = root;
  42. q->size = heap->current_size;
  43. bh_assert(root->size <= HMU_FC_NORMAL_MAX_SIZE);
  44. return heap;
  45. }
  46. gc_handle_t
  47. gc_init_with_pool(char *buf, gc_size_t buf_size)
  48. {
  49. char *buf_end = buf + buf_size;
  50. char *buf_aligned = (char *)(((uintptr_t)buf + 7) & (uintptr_t)~7);
  51. char *base_addr = buf_aligned + sizeof(gc_heap_t);
  52. gc_heap_t *heap = (gc_heap_t *)buf_aligned;
  53. gc_size_t heap_max_size;
  54. if (buf_size < APP_HEAP_SIZE_MIN) {
  55. LOG_ERROR("[GC_ERROR]heap init buf size (%" PRIu32 ") < %" PRIu32 "\n",
  56. buf_size, (uint32)APP_HEAP_SIZE_MIN);
  57. return NULL;
  58. }
  59. base_addr =
  60. (char *)(((uintptr_t)base_addr + 7) & (uintptr_t)~7) + GC_HEAD_PADDING;
  61. heap_max_size = (uint32)(buf_end - base_addr) & (uint32)~7;
  62. #if WASM_ENABLE_MEMORY_TRACING != 0
  63. os_printf("Heap created, total size: %u\n", buf_size);
  64. os_printf(" heap struct size: %u\n", sizeof(gc_heap_t));
  65. os_printf(" actual heap size: %u\n", heap_max_size);
  66. os_printf(" padding bytes: %u\n",
  67. buf_size - sizeof(gc_heap_t) - heap_max_size);
  68. #endif
  69. return gc_init_internal(heap, base_addr, heap_max_size);
  70. }
  71. gc_handle_t
  72. gc_init_with_struct_and_pool(char *struct_buf, gc_size_t struct_buf_size,
  73. char *pool_buf, gc_size_t pool_buf_size)
  74. {
  75. gc_heap_t *heap = (gc_heap_t *)struct_buf;
  76. char *base_addr = pool_buf + GC_HEAD_PADDING;
  77. char *pool_buf_end = pool_buf + pool_buf_size;
  78. gc_size_t heap_max_size;
  79. if ((((uintptr_t)struct_buf) & 7) != 0) {
  80. LOG_ERROR("[GC_ERROR]heap init struct buf not 8-byte aligned\n");
  81. return NULL;
  82. }
  83. if (struct_buf_size < sizeof(gc_handle_t)) {
  84. LOG_ERROR("[GC_ERROR]heap init struct buf size (%" PRIu32 ") < %zu\n",
  85. struct_buf_size, sizeof(gc_handle_t));
  86. return NULL;
  87. }
  88. if ((((uintptr_t)pool_buf) & 7) != 0) {
  89. LOG_ERROR("[GC_ERROR]heap init pool buf not 8-byte aligned\n");
  90. return NULL;
  91. }
  92. if (pool_buf_size < APP_HEAP_SIZE_MIN) {
  93. LOG_ERROR("[GC_ERROR]heap init buf size (%" PRIu32 ") < %u\n",
  94. pool_buf_size, APP_HEAP_SIZE_MIN);
  95. return NULL;
  96. }
  97. heap_max_size = (uint32)(pool_buf_end - base_addr) & (uint32)~7;
  98. #if WASM_ENABLE_MEMORY_TRACING != 0
  99. os_printf("Heap created, total size: %u\n",
  100. struct_buf_size + pool_buf_size);
  101. os_printf(" heap struct size: %u\n", sizeof(gc_heap_t));
  102. os_printf(" actual heap size: %u\n", heap_max_size);
  103. os_printf(" padding bytes: %u\n", pool_buf_size - heap_max_size);
  104. #endif
  105. return gc_init_internal(heap, base_addr, heap_max_size);
  106. }
  107. int
  108. gc_destroy_with_pool(gc_handle_t handle)
  109. {
  110. gc_heap_t *heap = (gc_heap_t *)handle;
  111. int ret = GC_SUCCESS;
  112. #if WASM_ENABLE_GC != 0
  113. gc_size_t i = 0;
  114. if (heap->extra_info_node_cnt > 0) {
  115. for (i = 0; i < heap->extra_info_node_cnt; i++) {
  116. extra_info_node_t *node = heap->extra_info_nodes[i];
  117. #if BH_ENABLE_GC_VERIFY != 0
  118. os_printf("Memory leak detected: gc object [%p] not claimed\n",
  119. node->obj);
  120. #endif
  121. bh_assert(heap->is_reclaim_enabled);
  122. node->finalizer(node->obj, node->data);
  123. BH_FREE(heap->extra_info_nodes[i]);
  124. }
  125. if (heap->extra_info_nodes != heap->extra_info_normal_nodes) {
  126. BH_FREE(heap->extra_info_nodes);
  127. }
  128. }
  129. #endif
  130. #if BH_ENABLE_GC_VERIFY != 0
  131. hmu_t *cur = (hmu_t *)heap->base_addr;
  132. hmu_t *end = (hmu_t *)((char *)heap->base_addr + heap->current_size);
  133. if (
  134. #if BH_ENABLE_GC_CORRUPTION_CHECK != 0
  135. !heap->is_heap_corrupted &&
  136. #endif
  137. (hmu_t *)((char *)cur + hmu_get_size(cur)) != end) {
  138. LOG_WARNING("Memory leak detected:\n");
  139. gci_dump(heap);
  140. ret = GC_ERROR;
  141. }
  142. #endif
  143. os_mutex_destroy(&heap->lock);
  144. memset(heap->base_addr, 0, heap->current_size);
  145. memset(heap, 0, sizeof(gc_heap_t));
  146. return ret;
  147. }
  148. #if WASM_ENABLE_GC != 0
  149. #if WASM_ENABLE_THREAD_MGR == 0
  150. void
  151. gc_enable_gc_reclaim(gc_handle_t handle, void *exec_env)
  152. {
  153. gc_heap_t *heap = (gc_heap_t *)handle;
  154. heap->is_reclaim_enabled = 1;
  155. heap->exec_env = exec_env;
  156. }
  157. #else
  158. void
  159. gc_enable_gc_reclaim(gc_handle_t handle, void *cluster)
  160. {
  161. gc_heap_t *heap = (gc_heap_t *)handle;
  162. heap->is_reclaim_enabled = 1;
  163. heap->cluster = cluster;
  164. }
  165. #endif
  166. #endif
  167. uint32
  168. gc_get_heap_struct_size()
  169. {
  170. return sizeof(gc_heap_t);
  171. }
  172. static void
  173. adjust_ptr(uint8 **p_ptr, intptr_t offset)
  174. {
  175. if (*p_ptr)
  176. *p_ptr = (uint8 *)((intptr_t)(*p_ptr) + offset);
  177. }
  178. int
  179. gc_migrate(gc_handle_t handle, char *pool_buf_new, gc_size_t pool_buf_size)
  180. {
  181. gc_heap_t *heap = (gc_heap_t *)handle;
  182. char *base_addr_new = pool_buf_new + GC_HEAD_PADDING;
  183. char *pool_buf_end = pool_buf_new + pool_buf_size;
  184. intptr_t offset = (uint8 *)base_addr_new - (uint8 *)heap->base_addr;
  185. hmu_t *cur = NULL, *end = NULL;
  186. hmu_tree_node_t *tree_node;
  187. uint8 **p_left, **p_right, **p_parent;
  188. gc_size_t heap_max_size, size;
  189. if ((((uintptr_t)pool_buf_new) & 7) != 0) {
  190. LOG_ERROR("[GC_ERROR]heap migrate pool buf not 8-byte aligned\n");
  191. return GC_ERROR;
  192. }
  193. heap_max_size = (uint32)(pool_buf_end - base_addr_new) & (uint32)~7;
  194. if (pool_buf_end < base_addr_new || heap_max_size < heap->current_size) {
  195. LOG_ERROR("[GC_ERROR]heap migrate invlaid pool buf size\n");
  196. return GC_ERROR;
  197. }
  198. if (offset == 0)
  199. return 0;
  200. #if BH_ENABLE_GC_CORRUPTION_CHECK != 0
  201. if (heap->is_heap_corrupted) {
  202. LOG_ERROR("[GC_ERROR]Heap is corrupted, heap migrate failed.\n");
  203. return GC_ERROR;
  204. }
  205. #endif
  206. heap->base_addr = (uint8 *)base_addr_new;
  207. ASSERT_TREE_NODE_ALIGNED_ACCESS(heap->kfc_tree_root);
  208. p_left = (uint8 **)((uint8 *)heap->kfc_tree_root
  209. + offsetof(hmu_tree_node_t, left));
  210. p_right = (uint8 **)((uint8 *)heap->kfc_tree_root
  211. + offsetof(hmu_tree_node_t, right));
  212. p_parent = (uint8 **)((uint8 *)heap->kfc_tree_root
  213. + offsetof(hmu_tree_node_t, parent));
  214. adjust_ptr(p_left, offset);
  215. adjust_ptr(p_right, offset);
  216. adjust_ptr(p_parent, offset);
  217. cur = (hmu_t *)heap->base_addr;
  218. end = (hmu_t *)((char *)heap->base_addr + heap->current_size);
  219. while (cur < end) {
  220. size = hmu_get_size(cur);
  221. #if BH_ENABLE_GC_CORRUPTION_CHECK != 0
  222. if (size <= 0 || size > (uint32)((uint8 *)end - (uint8 *)cur)) {
  223. LOG_ERROR("[GC_ERROR]Heap is corrupted, heap migrate failed.\n");
  224. heap->is_heap_corrupted = true;
  225. return GC_ERROR;
  226. }
  227. #endif
  228. if (hmu_get_ut(cur) == HMU_FC && !HMU_IS_FC_NORMAL(size)) {
  229. tree_node = (hmu_tree_node_t *)cur;
  230. ASSERT_TREE_NODE_ALIGNED_ACCESS(tree_node);
  231. p_left = (uint8 **)((uint8 *)tree_node
  232. + offsetof(hmu_tree_node_t, left));
  233. p_right = (uint8 **)((uint8 *)tree_node
  234. + offsetof(hmu_tree_node_t, right));
  235. p_parent = (uint8 **)((uint8 *)tree_node
  236. + offsetof(hmu_tree_node_t, parent));
  237. adjust_ptr(p_left, offset);
  238. adjust_ptr(p_right, offset);
  239. if (tree_node->parent != heap->kfc_tree_root)
  240. /* The root node belongs to heap structure,
  241. it is fixed part and isn't changed. */
  242. adjust_ptr(p_parent, offset);
  243. }
  244. cur = (hmu_t *)((char *)cur + size);
  245. }
  246. #if BH_ENABLE_GC_CORRUPTION_CHECK != 0
  247. if (cur != end) {
  248. LOG_ERROR("[GC_ERROR]Heap is corrupted, heap migrate failed.\n");
  249. heap->is_heap_corrupted = true;
  250. return GC_ERROR;
  251. }
  252. #else
  253. bh_assert(cur == end);
  254. #endif
  255. return 0;
  256. }
  257. bool
  258. gc_is_heap_corrupted(gc_handle_t handle)
  259. {
  260. #if BH_ENABLE_GC_CORRUPTION_CHECK != 0
  261. gc_heap_t *heap = (gc_heap_t *)handle;
  262. return heap->is_heap_corrupted ? true : false;
  263. #else
  264. return false;
  265. #endif
  266. }
  267. #if BH_ENABLE_GC_VERIFY != 0
  268. void
  269. gci_verify_heap(gc_heap_t *heap)
  270. {
  271. hmu_t *cur = NULL, *end = NULL;
  272. bh_assert(heap && gci_is_heap_valid(heap));
  273. cur = (hmu_t *)heap->base_addr;
  274. end = (hmu_t *)(heap->base_addr + heap->current_size);
  275. while (cur < end) {
  276. hmu_verify(heap, cur);
  277. cur = (hmu_t *)((gc_uint8 *)cur + hmu_get_size(cur));
  278. }
  279. bh_assert(cur == end);
  280. }
  281. #endif
  282. void
  283. gc_heap_stat(void *heap_ptr, gc_stat_t *stat)
  284. {
  285. hmu_t *cur = NULL, *end = NULL;
  286. hmu_type_t ut;
  287. gc_size_t size;
  288. gc_heap_t *heap = (gc_heap_t *)heap_ptr;
  289. memset(stat, 0, sizeof(gc_stat_t));
  290. cur = (hmu_t *)heap->base_addr;
  291. end = (hmu_t *)((char *)heap->base_addr + heap->current_size);
  292. while (cur < end) {
  293. ut = hmu_get_ut(cur);
  294. size = hmu_get_size(cur);
  295. bh_assert(size > 0);
  296. if (ut == HMU_FC || ut == HMU_FM
  297. || (ut == HMU_VO && hmu_is_vo_freed(cur))
  298. || (ut == HMU_WO && !hmu_is_wo_marked(cur))) {
  299. if (ut == HMU_VO)
  300. stat->vo_free += size;
  301. if (ut == HMU_WO)
  302. stat->wo_free += size;
  303. stat->free += size;
  304. stat->free_block++;
  305. if (size / sizeof(int) < GC_HEAP_STAT_SIZE - 1)
  306. stat->free_sizes[size / sizeof(int)] += 1;
  307. else
  308. stat->free_sizes[GC_HEAP_STAT_SIZE - 1] += 1;
  309. }
  310. else {
  311. if (ut == HMU_VO)
  312. stat->vo_usage += size;
  313. if (ut == HMU_WO)
  314. stat->wo_usage += size;
  315. stat->usage += size;
  316. stat->usage_block++;
  317. if (size / sizeof(int) < GC_HEAP_STAT_SIZE - 1)
  318. stat->usage_sizes[size / sizeof(int)] += 1;
  319. else
  320. stat->usage_sizes[GC_HEAP_STAT_SIZE - 1] += 1;
  321. }
  322. cur = (hmu_t *)((char *)cur + size);
  323. }
  324. }
  325. void
  326. gc_print_stat(void *heap_ptr, int verbose)
  327. {
  328. gc_stat_t stat;
  329. int i;
  330. bh_assert(heap_ptr != NULL);
  331. gc_heap_t *heap = (gc_heap_t *)(heap_ptr);
  332. gc_heap_stat(heap, &stat);
  333. os_printf("# stat %s %p use %d free %d \n", "instance", heap, stat.usage,
  334. stat.free);
  335. os_printf("# stat %s %p wo_usage %d vo_usage %d \n", "instance", heap,
  336. stat.wo_usage, stat.vo_usage);
  337. os_printf("# stat %s %p wo_free %d vo_free %d \n", "instance", heap,
  338. stat.wo_free, stat.vo_free);
  339. #if WASM_ENABLE_GC == 0
  340. os_printf("# stat free size %" PRIu32 " high %" PRIu32 "\n",
  341. heap->total_free_size, heap->highmark_size);
  342. #else
  343. os_printf("# stat gc %" PRIu32 " free size %" PRIu32 " high %" PRIu32 "\n",
  344. heap->total_gc_count, heap->total_free_size, heap->highmark_size);
  345. #endif
  346. if (verbose) {
  347. os_printf("usage sizes: \n");
  348. for (i = 0; i < GC_HEAP_STAT_SIZE; i++)
  349. if (stat.usage_sizes[i])
  350. os_printf(" %d: %d; ", i * 4, stat.usage_sizes[i]);
  351. os_printf(" \n");
  352. os_printf("free sizes: \n");
  353. for (i = 0; i < GC_HEAP_STAT_SIZE; i++)
  354. if (stat.free_sizes[i])
  355. os_printf(" %d: %d; ", i * 4, stat.free_sizes[i]);
  356. }
  357. }
  358. void *
  359. gc_heap_stats(void *heap_arg, uint32 *stats, int size)
  360. {
  361. int i;
  362. gc_heap_t *heap = (gc_heap_t *)heap_arg;
  363. if (!gci_is_heap_valid(heap)) {
  364. for (i = 0; i < size; i++)
  365. stats[i] = 0;
  366. return NULL;
  367. }
  368. for (i = 0; i < size; i++) {
  369. switch (i) {
  370. case GC_STAT_TOTAL:
  371. stats[i] = heap->current_size;
  372. break;
  373. case GC_STAT_FREE:
  374. stats[i] = heap->total_free_size;
  375. break;
  376. case GC_STAT_HIGHMARK:
  377. stats[i] = heap->highmark_size;
  378. break;
  379. #if WASM_ENABLE_GC != 0
  380. case GC_STAT_COUNT:
  381. stats[i] = heap->total_gc_count;
  382. break;
  383. case GC_STAT_TIME:
  384. stats[i] = heap->total_gc_time;
  385. break;
  386. #endif
  387. default:
  388. break;
  389. }
  390. }
  391. return heap;
  392. }
  393. void
  394. gc_traverse_tree(hmu_tree_node_t *node, gc_size_t *stats, int *n)
  395. {
  396. if (!node)
  397. return;
  398. if (*n > 0)
  399. gc_traverse_tree(node->right, stats, n);
  400. if (*n > 0) {
  401. (*n)--;
  402. stats[*n] = node->size;
  403. }
  404. if (*n > 0)
  405. gc_traverse_tree(node->left, stats, n);
  406. }
  407. void
  408. gc_show_stat(void *heap)
  409. {
  410. uint32 stats[GC_STAT_MAX];
  411. heap = gc_heap_stats(heap, stats, GC_STAT_MAX);
  412. os_printf("\n[GC stats %p] %" PRIu32 " %" PRIu32 " %" PRIu32 " %" PRIu32
  413. " %" PRIu32 "\n",
  414. heap, stats[0], stats[1], stats[2], stats[3], stats[4]);
  415. }
  416. #if WASM_ENABLE_GC != 0
  417. void
  418. gc_show_fragment(void *heap_arg)
  419. {
  420. uint32 stats[3];
  421. int n = 3;
  422. gc_heap_t *heap = (gc_heap_t *)heap_arg;
  423. memset(stats, 0, n * sizeof(int));
  424. gct_vm_mutex_lock(&heap->lock);
  425. gc_traverse_tree(heap->kfc_tree_root, (gc_size_t *)stats, &n);
  426. gct_vm_mutex_unlock(&heap->lock);
  427. os_printf("\n[GC %p top sizes] %" PRIu32 " %" PRIu32 " %" PRIu32 "\n", heap,
  428. stats[0], stats[1], stats[2]);
  429. }
  430. #if WASM_ENABLE_GC_PERF_PROFILING != 0
  431. void
  432. gc_dump_perf_profiling(gc_handle_t *handle)
  433. {
  434. gc_heap_t *gc_heap_handle = (void *)handle;
  435. if (gc_heap_handle) {
  436. os_printf("\nGC performance summary\n");
  437. os_printf(" Total GC time (ms): %u\n",
  438. gc_heap_handle->total_gc_time);
  439. os_printf(" Max GC time (ms): %u\n", gc_heap_handle->max_gc_time);
  440. }
  441. else {
  442. os_printf("Failed to dump GC performance\n");
  443. }
  444. }
  445. #endif
  446. #endif