simd_floating_point.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. /*
  2. * Copyright (C) 2019 Intel Corporation. All rights reserved.
  3. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  4. */
  5. #include "simd_floating_point.h"
  6. #include "simd_common.h"
  7. #include "../aot_emit_exception.h"
  8. #include "../aot_emit_numberic.h"
  9. #include "../../aot/aot_runtime.h"
  10. static bool
  11. simd_v128_float_arith(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  12. FloatArithmetic arith_op, LLVMTypeRef vector_type)
  13. {
  14. LLVMValueRef lhs, rhs, result = NULL;
  15. if (!(rhs =
  16. simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type, "rhs"))
  17. || !(lhs = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  18. "lhs"))) {
  19. return false;
  20. }
  21. switch (arith_op) {
  22. case FLOAT_ADD:
  23. result = LLVMBuildFAdd(comp_ctx->builder, lhs, rhs, "sum");
  24. break;
  25. case FLOAT_SUB:
  26. result = LLVMBuildFSub(comp_ctx->builder, lhs, rhs, "difference");
  27. break;
  28. case FLOAT_MUL:
  29. result = LLVMBuildFMul(comp_ctx->builder, lhs, rhs, "product");
  30. break;
  31. case FLOAT_DIV:
  32. result = LLVMBuildFDiv(comp_ctx->builder, lhs, rhs, "quotient");
  33. break;
  34. default:
  35. return false;
  36. }
  37. if (!result) {
  38. HANDLE_FAILURE(
  39. "LLVMBuildFAdd/LLVMBuildFSub/LLVMBuildFMul/LLVMBuildFDiv");
  40. return false;
  41. }
  42. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  43. }
  44. bool
  45. aot_compile_simd_f32x4_arith(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  46. FloatArithmetic arith_op)
  47. {
  48. return simd_v128_float_arith(comp_ctx, func_ctx, arith_op, V128_f32x4_TYPE);
  49. }
  50. bool
  51. aot_compile_simd_f64x2_arith(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  52. FloatArithmetic arith_op)
  53. {
  54. return simd_v128_float_arith(comp_ctx, func_ctx, arith_op, V128_f64x2_TYPE);
  55. }
  56. static bool
  57. simd_v128_float_neg(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  58. LLVMTypeRef vector_type)
  59. {
  60. LLVMValueRef vector, result;
  61. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  62. "vector"))) {
  63. return false;
  64. }
  65. if (!(result = LLVMBuildFNeg(comp_ctx->builder, vector, "neg"))) {
  66. HANDLE_FAILURE("LLVMBuildFNeg");
  67. return false;
  68. }
  69. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  70. }
  71. bool
  72. aot_compile_simd_f32x4_neg(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  73. {
  74. return simd_v128_float_neg(comp_ctx, func_ctx, V128_f32x4_TYPE);
  75. }
  76. bool
  77. aot_compile_simd_f64x2_neg(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  78. {
  79. return simd_v128_float_neg(comp_ctx, func_ctx, V128_f64x2_TYPE);
  80. }
  81. static bool
  82. simd_float_intrinsic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  83. LLVMTypeRef vector_type, const char *intrinsic)
  84. {
  85. LLVMValueRef vector, result;
  86. LLVMTypeRef param_types[1] = { vector_type };
  87. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  88. "vector"))) {
  89. return false;
  90. }
  91. if (!(result =
  92. aot_call_llvm_intrinsic(comp_ctx, func_ctx, intrinsic,
  93. vector_type, param_types, 1, vector))) {
  94. HANDLE_FAILURE("LLVMBuildCall");
  95. return false;
  96. }
  97. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  98. }
  99. bool
  100. aot_compile_simd_f32x4_abs(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  101. {
  102. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  103. "llvm.fabs.v4f32");
  104. }
  105. bool
  106. aot_compile_simd_f64x2_abs(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  107. {
  108. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  109. "llvm.fabs.v2f64");
  110. }
  111. bool
  112. aot_compile_simd_f32x4_sqrt(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  113. {
  114. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  115. "llvm.sqrt.v4f32");
  116. }
  117. bool
  118. aot_compile_simd_f64x2_sqrt(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  119. {
  120. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  121. "llvm.sqrt.v2f64");
  122. }
  123. bool
  124. aot_compile_simd_f32x4_ceil(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  125. {
  126. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  127. "llvm.ceil.v4f32");
  128. }
  129. bool
  130. aot_compile_simd_f64x2_ceil(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  131. {
  132. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  133. "llvm.ceil.v2f64");
  134. }
  135. bool
  136. aot_compile_simd_f32x4_floor(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  137. {
  138. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  139. "llvm.floor.v4f32");
  140. }
  141. bool
  142. aot_compile_simd_f64x2_floor(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  143. {
  144. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  145. "llvm.floor.v2f64");
  146. }
  147. bool
  148. aot_compile_simd_f32x4_trunc(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  149. {
  150. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  151. "llvm.trunc.v4f32");
  152. }
  153. bool
  154. aot_compile_simd_f64x2_trunc(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  155. {
  156. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  157. "llvm.trunc.v2f64");
  158. }
  159. bool
  160. aot_compile_simd_f32x4_nearest(AOTCompContext *comp_ctx,
  161. AOTFuncContext *func_ctx)
  162. {
  163. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  164. "llvm.rint.v4f32");
  165. }
  166. bool
  167. aot_compile_simd_f64x2_nearest(AOTCompContext *comp_ctx,
  168. AOTFuncContext *func_ctx)
  169. {
  170. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  171. "llvm.rint.v2f64");
  172. }
  173. static bool
  174. simd_float_cmp(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  175. FloatArithmetic op, LLVMTypeRef vector_type)
  176. {
  177. LLVMValueRef lhs, rhs, cmp, selected;
  178. if (!(rhs =
  179. simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type, "rhs"))
  180. || !(lhs = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  181. "lhs"))) {
  182. return false;
  183. }
  184. if (!(cmp = LLVMBuildFCmp(comp_ctx->builder,
  185. op == FLOAT_MIN ? LLVMRealOLT : LLVMRealOGT, rhs,
  186. lhs, "cmp"))) {
  187. HANDLE_FAILURE("LLVMBuildFCmp");
  188. return false;
  189. }
  190. if (!(selected =
  191. LLVMBuildSelect(comp_ctx->builder, cmp, rhs, lhs, "selected"))) {
  192. HANDLE_FAILURE("LLVMBuildSelect");
  193. return false;
  194. }
  195. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, selected, "result");
  196. }
  197. static bool
  198. simd_float_min(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  199. LLVMTypeRef vector_type)
  200. {
  201. LLVMValueRef lhs, rhs, lhs_nan, rhs_nan, olt_ret, ogt_ret, or_ret, ret1,
  202. ret2, ret3, ret4;
  203. if (!(rhs =
  204. simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type, "rhs"))
  205. || !(lhs = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  206. "lhs"))) {
  207. return false;
  208. }
  209. if (!(lhs_nan = LLVMBuildFCmp(comp_ctx->builder, LLVMRealUNO, lhs, lhs,
  210. "lhs_nan"))) {
  211. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealUNO");
  212. return false;
  213. }
  214. if (!(rhs_nan = LLVMBuildFCmp(comp_ctx->builder, LLVMRealUNO, rhs, rhs,
  215. "rhs_nan"))) {
  216. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealUNO");
  217. return false;
  218. }
  219. if (!(olt_ret = LLVMBuildFCmp(comp_ctx->builder, LLVMRealOLT, lhs, rhs,
  220. "olt_ret"))) {
  221. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealOLT");
  222. return false;
  223. }
  224. if (!(ogt_ret = LLVMBuildFCmp(comp_ctx->builder, LLVMRealOGT, lhs, rhs,
  225. "ogt_ret"))) {
  226. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealOGT");
  227. return false;
  228. }
  229. /* lhs or rhs */
  230. {
  231. LLVMValueRef integer_l, integer_r, integer_or;
  232. if (!(integer_l = LLVMBuildBitCast(comp_ctx->builder, lhs,
  233. V128_i64x2_TYPE, "lhs_to_int"))) {
  234. HANDLE_FAILURE("LLVMBuildBitCas");
  235. return false;
  236. }
  237. if (!(integer_r = LLVMBuildBitCast(comp_ctx->builder, rhs,
  238. V128_i64x2_TYPE, "rhs_to_int"))) {
  239. HANDLE_FAILURE("LLVMBuildBitCas");
  240. return false;
  241. }
  242. if (!(integer_or =
  243. LLVMBuildOr(comp_ctx->builder, integer_l, integer_r, "or"))) {
  244. HANDLE_FAILURE("LLVMBuildOr");
  245. return false;
  246. }
  247. if (!(or_ret = LLVMBuildBitCast(comp_ctx->builder, integer_or,
  248. vector_type, "holder"))) {
  249. HANDLE_FAILURE("LLVMBuildBitCast");
  250. return false;
  251. }
  252. }
  253. if (!(ret1 = LLVMBuildSelect(comp_ctx->builder, olt_ret, lhs, or_ret,
  254. "sel_olt"))) {
  255. HANDLE_FAILURE("LLVMBuildSelect");
  256. return false;
  257. }
  258. if (!(ret2 = LLVMBuildSelect(comp_ctx->builder, ogt_ret, rhs, ret1,
  259. "sel_ogt"))) {
  260. HANDLE_FAILURE("LLVMBuildSelect");
  261. return false;
  262. }
  263. if (!(ret3 = LLVMBuildSelect(comp_ctx->builder, lhs_nan, lhs, ret2,
  264. "sel_lhs_nan"))) {
  265. HANDLE_FAILURE("LLVMBuildSelect");
  266. return false;
  267. }
  268. if (!(ret4 = LLVMBuildSelect(comp_ctx->builder, rhs_nan, rhs, ret3,
  269. "sel_rhs_nan"))) {
  270. HANDLE_FAILURE("LLVMBuildSelect");
  271. return false;
  272. }
  273. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, ret4, "result");
  274. }
  275. static bool
  276. simd_float_max(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  277. LLVMTypeRef vector_type)
  278. {
  279. LLVMValueRef lhs, rhs, lhs_nan, rhs_nan, olt_ret, ogt_ret, and_ret, ret1,
  280. ret2, ret3, ret4;
  281. if (!(rhs =
  282. simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type, "rhs"))
  283. || !(lhs = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  284. "lhs"))) {
  285. return false;
  286. }
  287. if (!(lhs_nan = LLVMBuildFCmp(comp_ctx->builder, LLVMRealUNO, lhs, lhs,
  288. "lhs_nan"))) {
  289. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealUNO");
  290. return false;
  291. }
  292. if (!(rhs_nan = LLVMBuildFCmp(comp_ctx->builder, LLVMRealUNO, rhs, rhs,
  293. "rhs_nan"))) {
  294. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealUNO");
  295. return false;
  296. }
  297. if (!(olt_ret = LLVMBuildFCmp(comp_ctx->builder, LLVMRealOLT, lhs, rhs,
  298. "olt_ret"))) {
  299. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealOLT");
  300. return false;
  301. }
  302. if (!(ogt_ret = LLVMBuildFCmp(comp_ctx->builder, LLVMRealOGT, lhs, rhs,
  303. "ogt_ret"))) {
  304. HANDLE_FAILURE("LLVMBuildFCmp + LLVMRealOGT");
  305. return false;
  306. }
  307. /* lhs and rhs */
  308. {
  309. LLVMValueRef integer_l, integer_r, integer_and;
  310. if (!(integer_l = LLVMBuildBitCast(comp_ctx->builder, lhs,
  311. V128_i64x2_TYPE, "lhs_to_int"))) {
  312. HANDLE_FAILURE("LLVMBuildBitCas");
  313. return false;
  314. }
  315. if (!(integer_r = LLVMBuildBitCast(comp_ctx->builder, rhs,
  316. V128_i64x2_TYPE, "rhs_to_int"))) {
  317. HANDLE_FAILURE("LLVMBuildBitCas");
  318. return false;
  319. }
  320. if (!(integer_and = LLVMBuildAnd(comp_ctx->builder, integer_l,
  321. integer_r, "and"))) {
  322. HANDLE_FAILURE("LLVMBuildOr");
  323. return false;
  324. }
  325. if (!(and_ret = LLVMBuildBitCast(comp_ctx->builder, integer_and,
  326. vector_type, "holder"))) {
  327. HANDLE_FAILURE("LLVMBuildBitCast");
  328. return false;
  329. }
  330. }
  331. if (!(ret1 = LLVMBuildSelect(comp_ctx->builder, ogt_ret, lhs, and_ret,
  332. "sel_ogt"))) {
  333. HANDLE_FAILURE("LLVMBuildSelect");
  334. return false;
  335. }
  336. if (!(ret2 = LLVMBuildSelect(comp_ctx->builder, olt_ret, rhs, ret1,
  337. "sel_olt"))) {
  338. HANDLE_FAILURE("LLVMBuildSelect");
  339. return false;
  340. }
  341. if (!(ret3 = LLVMBuildSelect(comp_ctx->builder, lhs_nan, lhs, ret2,
  342. "sel_lhs_nan"))) {
  343. HANDLE_FAILURE("LLVMBuildSelect");
  344. return false;
  345. }
  346. if (!(ret4 = LLVMBuildSelect(comp_ctx->builder, rhs_nan, rhs, ret3,
  347. "sel_rhs_nan"))) {
  348. HANDLE_FAILURE("LLVMBuildSelect");
  349. return false;
  350. }
  351. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, ret4, "result");
  352. }
  353. bool
  354. aot_compile_simd_f32x4_min_max(AOTCompContext *comp_ctx,
  355. AOTFuncContext *func_ctx, bool run_min)
  356. {
  357. return run_min ? simd_float_min(comp_ctx, func_ctx, V128_f32x4_TYPE)
  358. : simd_float_max(comp_ctx, func_ctx, V128_f32x4_TYPE);
  359. }
  360. bool
  361. aot_compile_simd_f64x2_min_max(AOTCompContext *comp_ctx,
  362. AOTFuncContext *func_ctx, bool run_min)
  363. {
  364. return run_min ? simd_float_min(comp_ctx, func_ctx, V128_f64x2_TYPE)
  365. : simd_float_max(comp_ctx, func_ctx, V128_f64x2_TYPE);
  366. }
  367. bool
  368. aot_compile_simd_f32x4_pmin_pmax(AOTCompContext *comp_ctx,
  369. AOTFuncContext *func_ctx, bool run_min)
  370. {
  371. return simd_float_cmp(comp_ctx, func_ctx, run_min ? FLOAT_MIN : FLOAT_MAX,
  372. V128_f32x4_TYPE);
  373. }
  374. bool
  375. aot_compile_simd_f64x2_pmin_pmax(AOTCompContext *comp_ctx,
  376. AOTFuncContext *func_ctx, bool run_min)
  377. {
  378. return simd_float_cmp(comp_ctx, func_ctx, run_min ? FLOAT_MIN : FLOAT_MAX,
  379. V128_f64x2_TYPE);
  380. }
  381. bool
  382. aot_compile_simd_f64x2_demote(AOTCompContext *comp_ctx,
  383. AOTFuncContext *func_ctx)
  384. {
  385. LLVMValueRef vector, elem_0, elem_1, result;
  386. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx,
  387. V128_f64x2_TYPE, "vector"))) {
  388. return false;
  389. }
  390. if (!(elem_0 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  391. LLVM_CONST(i32_zero), "elem_0"))
  392. || !(elem_1 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  393. LLVM_CONST(i32_one), "elem_1"))) {
  394. HANDLE_FAILURE("LLVMBuildExtractElement");
  395. return false;
  396. }
  397. /* fptrunc <f64> elem to <f32> */
  398. if (!(elem_0 = LLVMBuildFPTrunc(comp_ctx->builder, elem_0, F32_TYPE,
  399. "elem_0_trunc"))
  400. || !(elem_1 = LLVMBuildFPTrunc(comp_ctx->builder, elem_1, F32_TYPE,
  401. "elem_1_trunc"))) {
  402. HANDLE_FAILURE("LLVMBuildFPTrunc");
  403. return false;
  404. }
  405. if (!(result = LLVMBuildInsertElement(comp_ctx->builder,
  406. LLVM_CONST(f32x4_vec_zero), elem_0,
  407. LLVM_CONST(i32_zero), "new_vector_0"))
  408. || !(result =
  409. LLVMBuildInsertElement(comp_ctx->builder, result, elem_1,
  410. LLVM_CONST(i32_one), "new_vector_1"))) {
  411. HANDLE_FAILURE("LLVMBuildInsertElement");
  412. return false;
  413. }
  414. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  415. }
  416. bool
  417. aot_compile_simd_f32x4_promote(AOTCompContext *comp_ctx,
  418. AOTFuncContext *func_ctx)
  419. {
  420. LLVMValueRef vector, elem_0, elem_1, result;
  421. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx,
  422. V128_f32x4_TYPE, "vector"))) {
  423. return false;
  424. }
  425. if (!(elem_0 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  426. LLVM_CONST(i32_zero), "elem_0"))
  427. || !(elem_1 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  428. LLVM_CONST(i32_one), "elem_1"))) {
  429. HANDLE_FAILURE("LLVMBuildExtractElement");
  430. return false;
  431. }
  432. /* fpext <f32> elem to <f64> */
  433. if (!(elem_0 =
  434. LLVMBuildFPExt(comp_ctx->builder, elem_0, F64_TYPE, "elem_0_ext"))
  435. || !(elem_1 = LLVMBuildFPExt(comp_ctx->builder, elem_1, F64_TYPE,
  436. "elem_1_ext"))) {
  437. HANDLE_FAILURE("LLVMBuildFPExt");
  438. return false;
  439. }
  440. if (!(result = LLVMBuildInsertElement(comp_ctx->builder,
  441. LLVM_CONST(f64x2_vec_zero), elem_0,
  442. LLVM_CONST(i32_zero), "new_vector_0"))
  443. || !(result =
  444. LLVMBuildInsertElement(comp_ctx->builder, result, elem_1,
  445. LLVM_CONST(i32_one), "new_vector_1"))) {
  446. HANDLE_FAILURE("LLVMBuildInsertElement");
  447. return false;
  448. }
  449. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  450. }