utils.c 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. /*
  2. * Copyright (C) 2019 Intel Corporation. All rights reserved.
  3. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  4. */
  5. #include "utils.h"
  6. #include "logger.h"
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. error
  10. wasm_load(char *model_name, graph *g, execution_target target)
  11. {
  12. FILE *pFile = fopen(model_name, "r");
  13. if (pFile == NULL)
  14. return invalid_argument;
  15. uint8_t *buffer;
  16. size_t result;
  17. // allocate memory to contain the whole file:
  18. buffer = (uint8_t *)malloc(sizeof(uint8_t) * MAX_MODEL_SIZE);
  19. if (buffer == NULL) {
  20. fclose(pFile);
  21. return missing_memory;
  22. }
  23. result = fread(buffer, 1, MAX_MODEL_SIZE, pFile);
  24. if (result <= 0) {
  25. fclose(pFile);
  26. free(buffer);
  27. return missing_memory;
  28. }
  29. graph_builder_array arr;
  30. arr.size = 1;
  31. arr.buf = (graph_builder *)malloc(sizeof(graph_builder));
  32. if (arr.buf == NULL) {
  33. fclose(pFile);
  34. free(buffer);
  35. return missing_memory;
  36. }
  37. arr.buf[0].size = result;
  38. arr.buf[0].buf = buffer;
  39. error res = load(&arr, tensorflowlite, target, g);
  40. fclose(pFile);
  41. free(buffer);
  42. free(arr.buf);
  43. return res;
  44. }
  45. error
  46. wasm_init_execution_context(graph g, graph_execution_context *ctx)
  47. {
  48. return init_execution_context(g, ctx);
  49. }
  50. error
  51. wasm_set_input(graph_execution_context ctx, float *input_tensor, uint32_t *dim)
  52. {
  53. tensor_dimensions dims;
  54. dims.size = INPUT_TENSOR_DIMS;
  55. dims.buf = (uint32_t *)malloc(dims.size * sizeof(uint32_t));
  56. if (dims.buf == NULL)
  57. return missing_memory;
  58. tensor tensor;
  59. tensor.dimensions = &dims;
  60. for (int i = 0; i < tensor.dimensions->size; ++i)
  61. tensor.dimensions->buf[i] = dim[i];
  62. tensor.type = fp32;
  63. tensor.data = (uint8_t *)input_tensor;
  64. error err = set_input(ctx, 0, &tensor);
  65. free(dims.buf);
  66. return err;
  67. }
  68. error
  69. wasm_compute(graph_execution_context ctx)
  70. {
  71. return compute(ctx);
  72. }
  73. error
  74. wasm_get_output(graph_execution_context ctx, uint32_t index, float *out_tensor,
  75. uint32_t *out_size)
  76. {
  77. return get_output(ctx, index, (uint8_t *)out_tensor, out_size);
  78. }
  79. float *
  80. run_inference(execution_target target, float *input, uint32_t *input_size,
  81. uint32_t *output_size, char *model_name,
  82. uint32_t num_output_tensors)
  83. {
  84. graph graph;
  85. if (wasm_load(model_name, &graph, target) != success) {
  86. NN_ERR_PRINTF("Error when loading model.");
  87. exit(1);
  88. }
  89. graph_execution_context ctx;
  90. if (wasm_init_execution_context(graph, &ctx) != success) {
  91. NN_ERR_PRINTF("Error when initialixing execution context.");
  92. exit(1);
  93. }
  94. if (wasm_set_input(ctx, input, input_size) != success) {
  95. NN_ERR_PRINTF("Error when setting input tensor.");
  96. exit(1);
  97. }
  98. if (wasm_compute(ctx) != success) {
  99. NN_ERR_PRINTF("Error when running inference.");
  100. exit(1);
  101. }
  102. float *out_tensor = (float *)malloc(sizeof(float) * MAX_OUTPUT_TENSOR_SIZE);
  103. if (out_tensor == NULL) {
  104. NN_ERR_PRINTF("Error when allocating memory for output tensor.");
  105. exit(1);
  106. }
  107. uint32_t offset = 0;
  108. for (int i = 0; i < num_output_tensors; ++i) {
  109. *output_size = MAX_OUTPUT_TENSOR_SIZE - *output_size;
  110. if (wasm_get_output(ctx, i, &out_tensor[offset], output_size)
  111. != success) {
  112. NN_ERR_PRINTF("Error when getting index %d.", i);
  113. break;
  114. }
  115. offset += *output_size;
  116. }
  117. *output_size = offset;
  118. return out_tensor;
  119. }
  120. input_info
  121. create_input(int *dims)
  122. {
  123. input_info input = { .dim = NULL, .input_tensor = NULL, .elements = 1 };
  124. input.dim = malloc(INPUT_TENSOR_DIMS * sizeof(uint32_t));
  125. if (input.dim)
  126. for (int i = 0; i < INPUT_TENSOR_DIMS; ++i) {
  127. input.dim[i] = dims[i];
  128. input.elements *= dims[i];
  129. }
  130. input.input_tensor = malloc(input.elements * sizeof(float));
  131. for (int i = 0; i < input.elements; ++i)
  132. input.input_tensor[i] = i;
  133. return input;
  134. }