Wenyong Huang 3d327e2067 Merge branch main into dev/gc_refactor (#2114) 2 лет назад
..
src a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 лет назад
test 3d327e2067 Merge branch main into dev/gc_refactor (#2114) 2 лет назад
README.md a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 лет назад
wasi_nn.cmake a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 лет назад
wasi_nn.h 9eed6686df Refactor WASI-NN to simplify the support for multiple frameworks (#1834) 3 лет назад
wasi_nn_types.h 9eed6686df Refactor WASI-NN to simplify the support for multiple frameworks (#1834) 3 лет назад

README.md

WASI-NN

How to use

Enable WASI-NN in the WAMR by spefiying it in the cmake building configuration as follows,

set (WAMR_BUILD_WASI_NN  1)

The definition of the functions provided by WASI-NN is in the header file core/iwasm/libraries/wasi-nn/wasi_nn.h.

By only including this file in your WASM application you will bind WASI-NN into your module.

Tests

To run the tests we assume that the current directory is the root of the repository.

Build the runtime

Build the runtime image for your execution target type.

EXECUTION_TYPE can be:

  • cpu
  • nvidia-gpu

    EXECUTION_TYPE=cpu
    docker build -t wasi-nn-${EXECUTION_TYPE} -f core/iwasm/libraries/wasi-nn/test/Dockerfile.${EXECUTION_TYPE} .
    

Build wasm app

docker build -t wasi-nn-compile -f core/iwasm/libraries/wasi-nn/test/Dockerfile.compile .
docker run -v $PWD/core/iwasm/libraries/wasi-nn:/wasi-nn wasi-nn-compile

Run wasm app

If all the tests have run properly you will the the following message in the terminal,

Tests: passed!
  • CPU

    docker run \
    -v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-cpu \
    --dir=/assets \
    --env="TARGET=cpu" \
    /assets/test_tensorflow.wasm
    
  • (NVIDIA) GPU

    docker run \
    --runtime=nvidia \
    -v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-nvidia-gpu \
    --dir=/assets \
    --env="TARGET=gpu" \
    /assets/test_tensorflow.wasm
    

Requirements:

What is missing

Supported:

  • Graph encoding: tensorflowlite.
  • Execution target: cpu and gpu.
  • Tensor type: fp32.