tonibofarull a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 سال پیش
..
src a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 سال پیش
test a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 سال پیش
README.md a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 سال پیش
wasi_nn.cmake a15a731e12 wasi-nn: Support multiple TFLite models (#2002) 2 سال پیش
wasi_nn.h 9eed6686df Refactor WASI-NN to simplify the support for multiple frameworks (#1834) 3 سال پیش
wasi_nn_types.h 9eed6686df Refactor WASI-NN to simplify the support for multiple frameworks (#1834) 3 سال پیش

README.md

WASI-NN

How to use

Enable WASI-NN in the WAMR by spefiying it in the cmake building configuration as follows,

set (WAMR_BUILD_WASI_NN  1)

The definition of the functions provided by WASI-NN is in the header file core/iwasm/libraries/wasi-nn/wasi_nn.h.

By only including this file in your WASM application you will bind WASI-NN into your module.

Tests

To run the tests we assume that the current directory is the root of the repository.

Build the runtime

Build the runtime image for your execution target type.

EXECUTION_TYPE can be:

  • cpu
  • nvidia-gpu

    EXECUTION_TYPE=cpu
    docker build -t wasi-nn-${EXECUTION_TYPE} -f core/iwasm/libraries/wasi-nn/test/Dockerfile.${EXECUTION_TYPE} .
    

Build wasm app

docker build -t wasi-nn-compile -f core/iwasm/libraries/wasi-nn/test/Dockerfile.compile .
docker run -v $PWD/core/iwasm/libraries/wasi-nn:/wasi-nn wasi-nn-compile

Run wasm app

If all the tests have run properly you will the the following message in the terminal,

Tests: passed!
  • CPU

    docker run \
    -v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-cpu \
    --dir=/assets \
    --env="TARGET=cpu" \
    /assets/test_tensorflow.wasm
    
  • (NVIDIA) GPU

    docker run \
    --runtime=nvidia \
    -v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-nvidia-gpu \
    --dir=/assets \
    --env="TARGET=gpu" \
    /assets/test_tensorflow.wasm
    

Requirements:

What is missing

Supported:

  • Graph encoding: tensorflowlite.
  • Execution target: cpu and gpu.
  • Tensor type: fp32.