simd_floating_point.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. /*
  2. * Copyright (C) 2019 Intel Corporation. All rights reserved.
  3. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  4. */
  5. #include "simd_floating_point.h"
  6. #include "simd_common.h"
  7. #include "../aot_emit_exception.h"
  8. #include "../aot_emit_numberic.h"
  9. #include "../../aot/aot_runtime.h"
  10. static bool
  11. simd_v128_float_arith(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  12. FloatArithmetic arith_op, LLVMTypeRef vector_type)
  13. {
  14. LLVMValueRef lhs, rhs, result = NULL;
  15. if (!(rhs =
  16. simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type, "rhs"))
  17. || !(lhs = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  18. "lhs"))) {
  19. return false;
  20. }
  21. switch (arith_op) {
  22. case FLOAT_ADD:
  23. result = LLVMBuildFAdd(comp_ctx->builder, lhs, rhs, "sum");
  24. break;
  25. case FLOAT_SUB:
  26. result = LLVMBuildFSub(comp_ctx->builder, lhs, rhs, "difference");
  27. break;
  28. case FLOAT_MUL:
  29. result = LLVMBuildFMul(comp_ctx->builder, lhs, rhs, "product");
  30. break;
  31. case FLOAT_DIV:
  32. result = LLVMBuildFDiv(comp_ctx->builder, lhs, rhs, "quotient");
  33. break;
  34. default:
  35. return false;
  36. }
  37. if (!result) {
  38. HANDLE_FAILURE(
  39. "LLVMBuildFAdd/LLVMBuildFSub/LLVMBuildFMul/LLVMBuildFDiv");
  40. return false;
  41. }
  42. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  43. }
  44. bool
  45. aot_compile_simd_f32x4_arith(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  46. FloatArithmetic arith_op)
  47. {
  48. return simd_v128_float_arith(comp_ctx, func_ctx, arith_op, V128_f32x4_TYPE);
  49. }
  50. bool
  51. aot_compile_simd_f64x2_arith(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  52. FloatArithmetic arith_op)
  53. {
  54. return simd_v128_float_arith(comp_ctx, func_ctx, arith_op, V128_f64x2_TYPE);
  55. }
  56. static bool
  57. simd_v128_float_neg(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  58. LLVMTypeRef vector_type)
  59. {
  60. LLVMValueRef vector, result;
  61. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  62. "vector"))) {
  63. return false;
  64. }
  65. if (!(result = LLVMBuildFNeg(comp_ctx->builder, vector, "neg"))) {
  66. HANDLE_FAILURE("LLVMBuildFNeg");
  67. return false;
  68. }
  69. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  70. }
  71. bool
  72. aot_compile_simd_f32x4_neg(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  73. {
  74. return simd_v128_float_neg(comp_ctx, func_ctx, V128_f32x4_TYPE);
  75. }
  76. bool
  77. aot_compile_simd_f64x2_neg(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  78. {
  79. return simd_v128_float_neg(comp_ctx, func_ctx, V128_f64x2_TYPE);
  80. }
  81. static bool
  82. simd_float_intrinsic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  83. LLVMTypeRef vector_type, const char *intrinsic)
  84. {
  85. LLVMValueRef vector, result;
  86. LLVMTypeRef param_types[1] = { vector_type };
  87. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  88. "vector"))) {
  89. return false;
  90. }
  91. if (!(result =
  92. aot_call_llvm_intrinsic(comp_ctx, func_ctx, intrinsic,
  93. vector_type, param_types, 1, vector))) {
  94. HANDLE_FAILURE("LLVMBuildCall");
  95. return false;
  96. }
  97. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  98. }
  99. bool
  100. aot_compile_simd_f32x4_abs(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  101. {
  102. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  103. "llvm.fabs.v4f32");
  104. }
  105. bool
  106. aot_compile_simd_f64x2_abs(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  107. {
  108. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  109. "llvm.fabs.v2f64");
  110. }
  111. bool
  112. aot_compile_simd_f32x4_round(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  113. {
  114. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  115. "llvm.round.v4f32");
  116. }
  117. bool
  118. aot_compile_simd_f64x2_round(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  119. {
  120. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  121. "llvm.round.v2f64");
  122. }
  123. bool
  124. aot_compile_simd_f32x4_sqrt(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  125. {
  126. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  127. "llvm.sqrt.v4f32");
  128. }
  129. bool
  130. aot_compile_simd_f64x2_sqrt(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  131. {
  132. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  133. "llvm.sqrt.v2f64");
  134. }
  135. bool
  136. aot_compile_simd_f32x4_ceil(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  137. {
  138. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  139. "llvm.ceil.v4f32");
  140. }
  141. bool
  142. aot_compile_simd_f64x2_ceil(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  143. {
  144. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  145. "llvm.ceil.v2f64");
  146. }
  147. bool
  148. aot_compile_simd_f32x4_floor(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  149. {
  150. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  151. "llvm.floor.v4f32");
  152. }
  153. bool
  154. aot_compile_simd_f64x2_floor(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  155. {
  156. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  157. "llvm.floor.v2f64");
  158. }
  159. bool
  160. aot_compile_simd_f32x4_trunc(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  161. {
  162. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  163. "llvm.trunc.v4f32");
  164. }
  165. bool
  166. aot_compile_simd_f64x2_trunc(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx)
  167. {
  168. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  169. "llvm.trunc.v2f64");
  170. }
  171. bool
  172. aot_compile_simd_f32x4_nearest(AOTCompContext *comp_ctx,
  173. AOTFuncContext *func_ctx)
  174. {
  175. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f32x4_TYPE,
  176. "llvm.rint.v4f32");
  177. }
  178. bool
  179. aot_compile_simd_f64x2_nearest(AOTCompContext *comp_ctx,
  180. AOTFuncContext *func_ctx)
  181. {
  182. return simd_float_intrinsic(comp_ctx, func_ctx, V128_f64x2_TYPE,
  183. "llvm.rint.v2f64");
  184. }
  185. static bool
  186. simd_float_cmp(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  187. FloatArithmetic arith_op, LLVMTypeRef vector_type)
  188. {
  189. LLVMValueRef lhs, rhs, result;
  190. LLVMRealPredicate op = FLOAT_MIN == arith_op ? LLVMRealULT : LLVMRealUGT;
  191. if (!(rhs =
  192. simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type, "rhs"))
  193. || !(lhs = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  194. "lhs"))) {
  195. return false;
  196. }
  197. if (!(result = LLVMBuildFCmp(comp_ctx->builder, op, lhs, rhs, "cmp"))) {
  198. HANDLE_FAILURE("LLVMBuildFCmp");
  199. return false;
  200. }
  201. if (!(result =
  202. LLVMBuildSelect(comp_ctx->builder, result, lhs, rhs, "select"))) {
  203. HANDLE_FAILURE("LLVMBuildSelect");
  204. return false;
  205. }
  206. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  207. }
  208. /*TODO: sugggest non-IA platforms check with "llvm.minimum.*" and
  209. * "llvm.maximum.*" firstly */
  210. bool
  211. aot_compile_simd_f32x4_min_max(AOTCompContext *comp_ctx,
  212. AOTFuncContext *func_ctx, bool run_min)
  213. {
  214. return simd_float_cmp(comp_ctx, func_ctx, run_min ? FLOAT_MIN : FLOAT_MAX,
  215. V128_f32x4_TYPE);
  216. }
  217. bool
  218. aot_compile_simd_f64x2_min_max(AOTCompContext *comp_ctx,
  219. AOTFuncContext *func_ctx, bool run_min)
  220. {
  221. return simd_float_cmp(comp_ctx, func_ctx, run_min ? FLOAT_MIN : FLOAT_MAX,
  222. V128_f64x2_TYPE);
  223. }
  224. static bool
  225. simd_float_pmin_max(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
  226. LLVMTypeRef vector_type, const char *intrinsic)
  227. {
  228. LLVMValueRef lhs, rhs, result;
  229. LLVMTypeRef param_types[2];
  230. param_types[0] = vector_type;
  231. param_types[1] = vector_type;
  232. if (!(rhs =
  233. simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type, "rhs"))
  234. || !(lhs = simd_pop_v128_and_bitcast(comp_ctx, func_ctx, vector_type,
  235. "lhs"))) {
  236. return false;
  237. }
  238. if (!(result =
  239. aot_call_llvm_intrinsic(comp_ctx, func_ctx, intrinsic,
  240. vector_type, param_types, 2, lhs, rhs))) {
  241. return false;
  242. }
  243. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  244. }
  245. bool
  246. aot_compile_simd_f32x4_pmin_pmax(AOTCompContext *comp_ctx,
  247. AOTFuncContext *func_ctx, bool run_min)
  248. {
  249. return simd_float_pmin_max(comp_ctx, func_ctx, V128_f32x4_TYPE,
  250. run_min ? "llvm.minnum.v4f32"
  251. : "llvm.maxnum.v4f32");
  252. }
  253. bool
  254. aot_compile_simd_f64x2_pmin_pmax(AOTCompContext *comp_ctx,
  255. AOTFuncContext *func_ctx, bool run_min)
  256. {
  257. return simd_float_pmin_max(comp_ctx, func_ctx, V128_f64x2_TYPE,
  258. run_min ? "llvm.minnum.v2f64"
  259. : "llvm.maxnum.v2f64");
  260. }
  261. bool
  262. aot_compile_simd_f64x2_demote(AOTCompContext *comp_ctx,
  263. AOTFuncContext *func_ctx)
  264. {
  265. LLVMValueRef vector, elem_0, elem_1, result;
  266. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx,
  267. V128_f64x2_TYPE, "vector"))) {
  268. return false;
  269. }
  270. if (!(elem_0 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  271. LLVM_CONST(i32_zero), "elem_0"))
  272. || !(elem_1 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  273. LLVM_CONST(i32_one), "elem_1"))) {
  274. HANDLE_FAILURE("LLVMBuildExtractElement");
  275. return false;
  276. }
  277. /* fptrunc <f64> elem to <f32> */
  278. if (!(elem_0 = LLVMBuildFPTrunc(comp_ctx->builder, elem_0, F32_TYPE,
  279. "elem_0_trunc"))
  280. || !(elem_1 = LLVMBuildFPTrunc(comp_ctx->builder, elem_1, F32_TYPE,
  281. "elem_1_trunc"))) {
  282. HANDLE_FAILURE("LLVMBuildFPTrunc");
  283. return false;
  284. }
  285. if (!(result = LLVMBuildInsertElement(comp_ctx->builder,
  286. LLVM_CONST(f32x4_vec_zero), elem_0,
  287. LLVM_CONST(i32_zero), "new_vector_0"))
  288. || !(result =
  289. LLVMBuildInsertElement(comp_ctx->builder, result, elem_1,
  290. LLVM_CONST(i32_one), "new_vector_1"))) {
  291. HANDLE_FAILURE("LLVMBuildInsertElement");
  292. return false;
  293. }
  294. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  295. }
  296. bool
  297. aot_compile_simd_f32x4_promote(AOTCompContext *comp_ctx,
  298. AOTFuncContext *func_ctx)
  299. {
  300. LLVMValueRef vector, elem_0, elem_1, result;
  301. if (!(vector = simd_pop_v128_and_bitcast(comp_ctx, func_ctx,
  302. V128_f32x4_TYPE, "vector"))) {
  303. return false;
  304. }
  305. if (!(elem_0 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  306. LLVM_CONST(i32_zero), "elem_0"))
  307. || !(elem_1 = LLVMBuildExtractElement(comp_ctx->builder, vector,
  308. LLVM_CONST(i32_one), "elem_1"))) {
  309. HANDLE_FAILURE("LLVMBuildExtractElement");
  310. return false;
  311. }
  312. /* fpext <f32> elem to <f64> */
  313. if (!(elem_0 =
  314. LLVMBuildFPExt(comp_ctx->builder, elem_0, F64_TYPE, "elem_0_ext"))
  315. || !(elem_1 = LLVMBuildFPExt(comp_ctx->builder, elem_1, F64_TYPE,
  316. "elem_1_ext"))) {
  317. HANDLE_FAILURE("LLVMBuildFPExt");
  318. return false;
  319. }
  320. if (!(result = LLVMBuildInsertElement(comp_ctx->builder,
  321. LLVM_CONST(f64x2_vec_zero), elem_0,
  322. LLVM_CONST(i32_zero), "new_vector_0"))
  323. || !(result =
  324. LLVMBuildInsertElement(comp_ctx->builder, result, elem_1,
  325. LLVM_CONST(i32_one), "new_vector_1"))) {
  326. HANDLE_FAILURE("LLVMBuildInsertElement");
  327. return false;
  328. }
  329. return simd_bitcast_and_push_v128(comp_ctx, func_ctx, result, "result");
  330. }