Alex Tsitsiura ccc27ed033 [Telink] RAM/ROM optimization & Update Telink image to 12 (#29373) 2 år sedan
..
include ccc27ed033 [Telink] RAM/ROM optimization & Update Telink image to 12 (#29373) 2 år sedan
src ccc27ed033 [Telink] RAM/ROM optimization & Update Telink image to 12 (#29373) 2 år sedan
third_party fec656066a [Telink] Add Window app demo (#25240) 2 år sedan
.gitignore fec656066a [Telink] Add Window app demo (#25240) 2 år sedan
CMakeLists.txt ccc27ed033 [Telink] RAM/ROM optimization & Update Telink image to 12 (#29373) 2 år sedan
Kconfig ccc27ed033 [Telink] RAM/ROM optimization & Update Telink image to 12 (#29373) 2 år sedan
README.md ccc27ed033 [Telink] RAM/ROM optimization & Update Telink image to 12 (#29373) 2 år sedan
prj.conf ccc27ed033 [Telink] RAM/ROM optimization & Update Telink image to 12 (#29373) 2 år sedan
rpc.overlay fec656066a [Telink] Add Window app demo (#25240) 2 år sedan

README.md

Matter Telink Window Example Application

The Telink Window Example demonstrates how to remotely control a window shutter device. It uses buttons to test changing cover position and device states and LEDs to show the state of these changes. You can use this example as a reference for creating your own application.

Telink B91 EVK

Build and flash

  1. Run the Docker container:

    $ docker run -it --rm -v $PWD:/host -w /host ghcr.io/project-chip/chip-build-telink:$(wget -q -O - https://raw.githubusercontent.com/project-chip/connectedhomeip/master/.github/workflows/examples-telink.yaml 2> /dev/null | grep chip-build-telink | awk -F: '{print $NF}')
    

    Compatible docker image version can be found in next file:

    $ .github/workflows/examples-telink.yaml
    
  2. Activate the build environment:

    $ source ./scripts/activate.sh
    
  3. In the example dir run (replace __ with your board name, for example, tlsr9518adk80d or tlsr9528a):

    $ west build -b <build_target>
    

  4. Flash binary:

    $ west flash --erase
    
  5. Usage

    UART

    To get output from device, connect UART to following pins:

    Name Pin
    RX PB3 (pin 17 of J34 connector)
    TX PB2 (pin 16 of J34 connector)
    GND GND

    Buttons

    The following buttons are available on tlsr9518adk80d board:

    Name Function Description
    Button 1 Factory reset Triple press performs factory reset to forget currently commissioned Thread network and back to uncommissioned state
    Button 2 Open and Toggle Move Type control Manually triggers the Open state by one press and double press triggers the Lift-Tilt move type
    Button 3 Open commission window The button is opening commissioning window to perform commissioning over BLE
    Button 4 Close control Manually triggers the Close state by one press

    LEDs

    Indicate open-close position of Window Cover

    Blue LED indicates current Lift position (PWM in range of 0-254). To indicate the Tilt state in the same way connect external LED to pin PE0.

    Indicate current state of Thread network

    Red LED indicates current state of Thread network. It is able to be in following states:

    State Description
    Blinks with short pulses Device is not commissioned to Thread, Thread is disabled
    Blinks with frequent pulses Device is commissioned, Thread enabled. Device trying to JOIN thread network
    Blinks with wide pulses Device commissioned and joined to thread network as CHILD

    Indicate identify of device

    Green LED used to identify the device. The LED starts blinking when the Identify command of the Identify cluster is received. The command's argument can be used to specify the the effect. It is able to be in following effects:

    Effect Description
    Blinks (200 ms on/200 ms off) Blink (Clusters::Identify::EffectIdentifierEnum::kBlink)
    Breathe (during 1000 ms) Breathe (Clusters::Identify::EffectIdentifierEnum::kBreathe)
    Blinks (50 ms on/950 ms off) Okay (Clusters::Identify::EffectIdentifierEnum::kOkay)
    Blinks (1000 ms on/1000 ms off) Channel Change ( Clusters::Identify::EffectIdentifierEnum::kChannelChange)
    Blinks (950 ms on/50 ms off) Finish ( Clusters::Identify::EffectIdentifierEnum::kFinishEffect)
    LED off Stop (Clusters::Identify::EffectIdentifierEnum::kStopEffect)

    CHIP tool commands

    1. Build chip-tool cli

    2. Pair with device

      ${CHIP_TOOL_DIR}/chip-tool pairing ble-thread ${NODE_ID} hex:${DATASET} ${PIN_CODE} ${DISCRIMINATOR}
      

      Example:

      ./chip-tool pairing ble-thread 1234 hex:0e080000000000010000000300000f35060004001fffe0020811111111222222220708fd61f77bd3df233e051000112233445566778899aabbccddeeff030e4f70656e54687265616444656d6f010212340410445f2b5ca6f2a93a55ce570a70efeecb0c0402a0fff8 20202021 3840
      
    3. Switch on the light:

      ${CHIP_TOOL_DIR}/chip-tool onoff on 1
      

      here:

      • onoff is name of cluster
      • on command to the cluster
      • 1 ID of endpoint
    4. Switch off the light:

      ${CHIP_TOOL_DIR}/chip-tool onoff off 1
      

      here:

      • onoff is name of cluster
      • off command to the cluster
      • 1 ID of endpoint
    5. Read the light state:

      ${CHIP_TOOL_DIR}/chip-tool onoff read on-off 1
      

      here:

      • onoff is name of cluster
      • read command to the cluster
      • on-off attribute to read
      • 1 ID of endpoint
    6. Change brightness of light:

      ${CHIP_TOOL_DIR}/chip-tool levelcontrol move-to-level 32 0 0 0 1
      

      here:

      • levelcontrol is name of cluster
      • move-to-level command to the cluster
      • 32 brightness value
      • 0 transition time
      • 0 option mask
      • 0 option override
      • 1 ID of endpoint
    7. Read brightness level:

      ./chip-tool levelcontrol read current-level 1
      

      here:

      • levelcontrol is name of cluster
      • read command to the cluster
      • current-level attribute to read
      • 1 ID of endpoint

    OTA with Linux OTA Provider

    OTA feature enabled by default only for ota-requestor-app example. To enable OTA feature for another Telink example:

    • set CONFIG_CHIP_OTA_REQUESTOR=y in corresponding "prj.conf" configuration file.

    After build application with enabled OTA feature, use next binary files:

    • zephyr.bin - main binary to flash PCB (Use 2MB PCB).
    • zephyr-ota.bin - binary for OTA Provider

    All binaries has the same SW version. To test OTA “zephyr-ota.bin” should have higher SW version than base SW. Set CONFIG_CHIP_DEVICE_SOFTWARE_VERSION=2 in corresponding “prj.conf” configuration file.

    Usage of OTA:

    • Build the Linux OTA Provider

      ./scripts/examples/gn_build_example.sh examples/ota-provider-app/linux out/ota-provider-app chip_config_network_layer_ble=false
      
    • Run the Linux OTA Provider with OTA image.

      ./chip-ota-provider-app -f zephyr-ota.bin
      
    • Provision the Linux OTA Provider using chip-tool

      ./chip-tool pairing onnetwork ${OTA_PROVIDER_NODE_ID} 20202021
      

      here:

      • \${OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
    • Configure the ACL of the ota-provider-app to allow access

      ./chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": [112233], "targets": null}, {"fabricIndex": 1, "privilege": 3, "authMode": 2, "subjects": null, "targets": null}]' ${OTA_PROVIDER_NODE_ID} 0
      

      here:

      • \${OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
    • Use the chip-tool to announce the ota-provider-app to start the OTA process

      ./chip-tool otasoftwareupdaterequestor announce-otaprovider ${OTA_PROVIDER_NODE_ID} 0 0 0 ${DEVICE_NODE_ID} 0
      

      here:

      • \${OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
      • \${DEVICE_NODE_ID} is the node id of paired device

    Once the transfer is complete, OTA requestor sends ApplyUpdateRequest command to OTA provider for applying the image. Device will restart on successful application of OTA image.

    Building with Pigweed RPCs

    The RPCs in lighting-common/lighting_service/lighting_service.proto can be used to control various functionalities of the lighting app from a USB-connected host computer. To build the example with the RPC server, run the following command with build-target replaced with the build target name of the Nordic Semiconductor's kit you own:

    ```
    $ west build -b tlsr9518adk80d -- -DOVERLAY_CONFIG=rpc.overlay
    ```