| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- import logging
- import os
- import subprocess
- import pandas as pd
- from slugify import slugify
- error_catalog = {
- "CodeQL": {
- "No space left on device": {
- "short": "Ran out of space",
- "detail": "Exception with signature \"No space left on device\""
- },
- "Check that the disk containing the database directory has ample free space.": {
- "short": "Ran out of space",
- "detail": "Fatal internal error with message indicating that disk space most likely ran out"
- }
- },
- "Build example": {
- "Could not find a version that satisfies the requirement": {
- "short": "Requirements issue",
- "detail": "Unable to install a requirements in Python requirements.txt"
- },
- "No module named": {
- "short": "Missing module",
- "detail": "Expected module was missing"
- }
- },
- "Full builds": {
- "No space left on device": {
- "short": "Ran out of space",
- "detail": "Exception with signature \"No space left on device\""
- }
- }
- }
- def process_fail(id, pr, start_time, workflow):
- logging.info(f"Processing failure in {pr}, workflow {workflow} that started at {start_time}.")
- logging.info("Building output file structure.")
- output_path = f"recent_fails_logs/{slugify(pr)}/{slugify(workflow)}/{slugify(start_time)}"
- os.makedirs(output_path)
- logging.info("Gathering raw fail logs.")
- subprocess.run(f"gh run view -R project-chip/connectedhomeip {id} --log-failed > {output_path}/fail_log.txt", shell=True)
- # Eventually turn this into a catalog of error messages per workflow
- logging.info("Collecting info on likely cause of failure.")
- root_cause = "Unknown cause"
- with open(f"{output_path}/fail_log.txt") as fail_log_file:
- fail_log = fail_log_file.read()
- workflow_category = workflow.split(" - ")[0]
- if workflow_category in error_catalog:
- for error_message in error_catalog[workflow_category]:
- if error_message in fail_log:
- root_cause = error_catalog[workflow_category][error_message]["short"]
- break
- logging.info(f"Checking recent pass/fail rate of workflow {workflow}.")
- workflow_fail_rate_output_path = f"workflow_pass_rate/{slugify(workflow)}"
- if not os.path.exists(workflow_fail_rate_output_path):
- os.makedirs(workflow_fail_rate_output_path)
- subprocess.run(
- f"gh run list -R project-chip/connectedhomeip -b master -w '{workflow}' --json conclusion > {workflow_fail_rate_output_path}/run_list.json", shell=True)
- else:
- logging.info("This workflow has already been processed.")
- return [pr, workflow, root_cause]
- def main():
- logging.info("Gathering recent fails information into run_list.json.")
- subprocess.run("gh run list -R project-chip/connectedhomeip -b master -s failure --json databaseId,displayTitle,startedAt,workflowName > run_list.json", shell=True)
- logging.info("Reading run_list.json into a DataFrame.")
- df = pd.read_json("run_list.json")
- logging.info("Listing recent fails.")
- df.columns = ["ID", "Pull Request", "Start Time", "Workflow"]
- print("Recent Fails:")
- print(df.to_string(columns=["Pull Request", "Workflow"], index=False))
- print()
- df.to_csv("recent_fails.csv", index=False)
- logging.info("Listing frequency of recent fails by workflow.")
- frequency = df["Workflow"].value_counts(normalize=True).mul(100).round().astype(
- str).reset_index(name="Percentage") # Reformat this from "50.0" to "50%"
- print("Share of Recent Fails by Workflow:")
- print(frequency.to_string(index=False))
- print()
- frequency.to_csv("recent_workflow_fails_frequency.csv")
- logging.info("Conducting fail information parsing.")
- root_causes = df.apply(lambda row: process_fail(row["ID"], row["Pull Request"],
- row["Start Time"], row["Workflow"]), axis=1, result_type="expand")
- root_causes.columns = ["Pull Request", "Workflow", "Cause of Failure"]
- print("Likely Root Cause of Recent Fails:")
- print(root_causes.to_string(index=False))
- print()
- root_causes.to_csv("failure_cause_summary.csv")
- logging.info("Listing percent fail rate of recent fails by workflow.")
- fail_rate = {}
- for workflow in next(os.walk("workflow_pass_rate"))[1]:
- try:
- info = pd.read_json(f"workflow_pass_rate/{workflow}/run_list.json")
- info = info[info["conclusion"].str.len() > 0]
- fail_rate[workflow] = [info.value_counts(normalize=True).mul(100).round()["failure"]]
- except Exception:
- logging.exception(f"Recent runs info for {workflow} was not collected.")
- fail_rate = pd.DataFrame.from_dict(fail_rate, 'index', columns=["Fail Rate"])
- print("Recent Fail Rate of Each Workflow:")
- print(fail_rate.to_string())
- fail_rate.to_csv("workflow_fail_rate.csv")
- if __name__ == "__main__":
- main()
|