| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373 |
- /*
- * Copyright (c) 2021, Meco Jianting Man <jiantingman@foxmail.com>
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Change Logs:
- * Date Author Notes
- * 2021-11-27 Meco Man porting for rt_vsnprintf as the fully functional version
- */
- /**
- * @author (c) Eyal Rozenberg <eyalroz1@gmx.com>
- * 2021-2022, Haifa, Palestine/Israel
- * @author (c) Marco Paland (info@paland.com)
- * 2014-2019, PALANDesign Hannover, Germany
- *
- * @note Others have made smaller contributions to this file: see the
- * contributors page at https://github.com/eyalroz/printf/graphs/contributors
- * or ask one of the authors. The original code for exponential specifiers was
- * contributed by Martijn Jasperse <m.jasperse@gmail.com>.
- *
- * @brief Small stand-alone implementation of the printf family of functions
- * (`(v)printf`, `(v)s(n)printf` etc., geared towards use on embedded systems with
- * a very limited resources.
- *
- * @note the implementations are thread-safe; re-entrant; use no functions from
- * the standard library; and do not dynamically allocate any memory.
- *
- * @license The MIT License (MIT)
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- #include <stdio.h>
- #include <stdint.h>
- #include <limits.h>
- #include <stdbool.h>
- #include <rtconfig.h>
- #include <rtdef.h>
- #include <rtthread.h>
- #ifndef RT_VER_NUM /* Doesn't use menuconfig */
- // 'ntoa' conversion buffer size, this must be big enough to hold one converted
- // numeric number including padded zeros (dynamically created on stack)
- #ifndef PKG_VSNPRINTF_INTEGER_BUFFER_SIZE
- #define PKG_VSNPRINTF_INTEGER_BUFFER_SIZE 32
- #endif
- // size of the fixed (on-stack) buffer for printing individual decimal numbers.
- // this must be big enough to hold one converted floating-point value including
- // padded zeros.
- #ifndef PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE
- #define PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE 32
- #endif
- // Support for the decimal notation floating point conversion specifiers (%f, %F)
- #ifndef PKG_VSNPRINTF_SUPPORT_DECIMAL_SPECIFIERS
- #define PKG_VSNPRINTF_SUPPORT_DECIMAL_SPECIFIERS
- #endif
- // Support for the exponential notation floating point conversion specifiers (%e, %g, %E, %G)
- #ifndef PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- #define PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- #endif
- // Support for the length write-back specifier (%n)
- #ifndef PKG_VSNPRINTF_SUPPORT_WRITEBACK_SPECIFIER
- #define PKG_VSNPRINTF_SUPPORT_WRITEBACK_SPECIFIER
- #endif
- // Default precision for the floating point conversion specifiers (the C standard sets this at 6)
- #ifndef PKG_VSNPRINTF_DEFAULT_FLOAT_PRECISION
- #define PKG_VSNPRINTF_DEFAULT_FLOAT_PRECISION 6
- #endif
- // According to the C languages standard, printf() and related functions must be able to print any
- // integral number in floating-point notation, regardless of length, when using the %f specifier -
- // possibly hundreds of characters, potentially overflowing your buffers. In this implementation,
- // all values beyond this threshold are switched to exponential notation.
- #ifndef PKG_VSNPRINTF_MAX_INTEGRAL_DIGITS_FOR_DECIMAL
- #define PKG_VSNPRINTF_MAX_INTEGRAL_DIGITS_FOR_DECIMAL 9
- #endif
- // Support for the long long integral types (with the ll, z and t length modifiers for specifiers
- // %d,%i,%o,%x,%X,%u, and with the %p specifier). Note: 'L' (long double) is not supported.
- #ifndef PKG_VSNPRINTF_SUPPORT_LONG_LONG
- #define PKG_VSNPRINTF_SUPPORT_LONG_LONG
- #endif
- // The number of terms in a Taylor series expansion of log_10(x) to
- // use for approximation - including the power-zero term (i.e. the
- // value at the point of expansion).
- #ifndef PKG_VSNPRINTF_LOG10_TAYLOR_TERMS
- #define PKG_VSNPRINTF_LOG10_TAYLOR_TERMS 4
- #endif
- // Be extra-safe, and don't assume format specifiers are completed correctly
- // before the format string end.
- #ifndef PKG_VSNPRINTF_CHECK_FOR_NUL_IN_FORMAT_SPECIFIER
- #define PKG_VSNPRINTF_CHECK_FOR_NUL_IN_FORMAT_SPECIFIER
- #endif
- #endif /* RT_VER_NUM */
- #if PKG_VSNPRINTF_LOG10_TAYLOR_TERMS <= 1
- #error "At least one non-constant Taylor expansion is necessary for the log10() calculation"
- #endif
- ///////////////////////////////////////////////////////////////////////////////
- #define PRINTF_PREFER_DECIMAL false
- #define PRINTF_PREFER_EXPONENTIAL true
- // The following will convert the number-of-digits into an exponential-notation literal
- #define PRINTF_CONCATENATE(s1, s2) s1##s2
- #define PRINTF_EXPAND_THEN_CONCATENATE(s1, s2) PRINTF_CONCATENATE(s1, s2)
- #define PRINTF_FLOAT_NOTATION_THRESHOLD PRINTF_EXPAND_THEN_CONCATENATE(1e,PKG_VSNPRINTF_MAX_INTEGRAL_DIGITS_FOR_DECIMAL)
- // internal flag definitions
- #define FLAGS_ZEROPAD (1U << 0U)
- #define FLAGS_LEFT (1U << 1U)
- #define FLAGS_PLUS (1U << 2U)
- #define FLAGS_SPACE (1U << 3U)
- #define FLAGS_HASH (1U << 4U)
- #define FLAGS_UPPERCASE (1U << 5U)
- #define FLAGS_CHAR (1U << 6U)
- #define FLAGS_SHORT (1U << 7U)
- #define FLAGS_INT (1U << 8U)
- // Only used with PKG_VSNPRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
- #define FLAGS_LONG (1U << 9U)
- #define FLAGS_LONG_LONG (1U << 10U)
- #define FLAGS_PRECISION (1U << 11U)
- #define FLAGS_ADAPT_EXP (1U << 12U)
- #define FLAGS_POINTER (1U << 13U)
- // Note: Similar, but not identical, effect as FLAGS_HASH
- #define FLAGS_SIGNED (1U << 14U)
- // Only used with PKG_VSNPRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
- #ifdef PKG_VSNPRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
- #define FLAGS_INT8 FLAGS_CHAR
- #if (SHRT_MAX == 32767LL)
- #define FLAGS_INT16 FLAGS_SHORT
- #elif (INT_MAX == 32767LL)
- #define FLAGS_INT16 FLAGS_INT
- #elif (LONG_MAX == 32767LL)
- #define FLAGS_INT16 FLAGS_LONG
- #elif (LLONG_MAX == 32767LL)
- #define FLAGS_INT16 FLAGS_LONG_LONG
- #else
- #error "No basic integer type has a size of 16 bits exactly"
- #endif
- #if (SHRT_MAX == 2147483647LL)
- #define FLAGS_INT32 FLAGS_SHORT
- #elif (INT_MAX == 2147483647LL)
- #define FLAGS_INT32 FLAGS_INT
- #elif (LONG_MAX == 2147483647LL)
- #define FLAGS_INT32 FLAGS_LONG
- #elif (LLONG_MAX == 2147483647LL)
- #define FLAGS_INT32 FLAGS_LONG_LONG
- #else
- #error "No basic integer type has a size of 32 bits exactly"
- #endif
- #if (SHRT_MAX == 9223372036854775807LL)
- #define FLAGS_INT64 FLAGS_SHORT
- #elif (INT_MAX == 9223372036854775807LL)
- #define FLAGS_INT64 FLAGS_INT
- #elif (LONG_MAX == 9223372036854775807LL)
- #define FLAGS_INT64 FLAGS_LONG
- #elif (LLONG_MAX == 9223372036854775807LL)
- #define FLAGS_INT64 FLAGS_LONG_LONG
- #else
- #error "No basic integer type has a size of 64 bits exactly"
- #endif
- #endif // PKG_VSNPRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
- typedef unsigned int printf_flags_t;
- #define BASE_BINARY 2
- #define BASE_OCTAL 8
- #define BASE_DECIMAL 10
- #define BASE_HEX 16
- typedef uint8_t numeric_base_t;
- #ifdef PKG_VSNPRINTF_SUPPORT_LONG_LONG
- typedef unsigned long long printf_unsigned_value_t;
- typedef long long printf_signed_value_t;
- #else
- typedef unsigned long printf_unsigned_value_t;
- typedef long printf_signed_value_t;
- #endif
- // The printf()-family functions return an `int`; it is therefore
- // unnecessary/inappropriate to use size_t - often larger than int
- // in practice - for non-negative related values, such as widths,
- // precisions, offsets into buffers used for printing and the sizes
- // of these buffers. instead, we use:
- typedef unsigned int printf_size_t;
- #define PRINTF_MAX_POSSIBLE_BUFFER_SIZE INT_MAX
- // If we were to nitpick, this would actually be INT_MAX + 1,
- // since INT_MAX is the maximum return value, which excludes the
- // trailing '\0'.
- #if defined(PKG_VSNPRINTF_SUPPORT_DECIMAL_SPECIFIERS) || defined(PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)
- #include <float.h>
- #if FLT_RADIX != 2
- #error "Non-binary-radix floating-point types are unsupported."
- #endif
- #if DBL_MANT_DIG == 24
- #define DOUBLE_SIZE_IN_BITS 32
- typedef uint32_t double_uint_t;
- #define DOUBLE_EXPONENT_MASK 0xFFU
- #define DOUBLE_BASE_EXPONENT 127
- #define DOUBLE_MAX_SUBNORMAL_EXPONENT_OF_10 -38
- #define DOUBLE_MAX_SUBNORMAL_POWER_OF_10 1e-38
- #elif DBL_MANT_DIG == 53
- #define DOUBLE_SIZE_IN_BITS 64
- typedef uint64_t double_uint_t;
- #define DOUBLE_EXPONENT_MASK 0x7FFU
- #define DOUBLE_BASE_EXPONENT 1023
- #define DOUBLE_MAX_SUBNORMAL_EXPONENT_OF_10 -308
- #define DOUBLE_MAX_SUBNORMAL_POWER_OF_10 ((double)1e-308L)
- #else
- #error "Unsupported double type configuration"
- #endif
- #define DOUBLE_STORED_MANTISSA_BITS (DBL_MANT_DIG - 1)
- typedef union {
- double_uint_t U;
- double F;
- } double_with_bit_access;
- // This is unnecessary in C99, since compound initializers can be used,
- // but:
- // 1. Some compilers are finicky about this;
- // 2. Some people may want to convert this to C89;
- // 3. If you try to use it as C++, only C++20 supports compound literals
- static inline double_with_bit_access get_bit_access(double x)
- {
- double_with_bit_access dwba;
- dwba.F = x;
- return dwba;
- }
- static inline int get_sign_bit(double x)
- {
- // The sign is stored in the highest bit
- return (int) (get_bit_access(x).U >> (DOUBLE_SIZE_IN_BITS - 1));
- }
- static inline int get_exp2(double_with_bit_access x)
- {
- // The exponent in an IEEE-754 floating-point number occupies a contiguous
- // sequence of bits (e.g. 52..62 for 64-bit doubles), but with a non-trivial representation: An
- // unsigned offset from some negative value (with the extremal offset values reserved for
- // special use).
- return (int)((x.U >> DOUBLE_STORED_MANTISSA_BITS ) & DOUBLE_EXPONENT_MASK) - DOUBLE_BASE_EXPONENT;
- }
- #define PRINTF_ABS(_x) ( (_x) > 0 ? (_x) : -(_x) )
- #endif // (PKG_VSNPRINTF_SUPPORT_DECIMAL_SPECIFIERS || PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)
- // Note in particular the behavior here on LONG_MIN or LLONG_MIN; it is valid
- // and well-defined, but if you're not careful you can easily trigger undefined
- // behavior with -LONG_MIN or -LLONG_MIN
- #define ABS_FOR_PRINTING(_x) ((printf_unsigned_value_t) ( (_x) > 0 ? (_x) : -((printf_signed_value_t)_x) ))
- // wrapper (used as buffer) for output function type
- //
- // One of the following must hold:
- // 1. max_chars is 0
- // 2. buffer is non-null
- // 3. function is non-null
- //
- // ... otherwise bad things will happen.
- typedef struct {
- void (*function)(char c, void* extra_arg);
- void* extra_function_arg;
- char* buffer;
- printf_size_t pos;
- printf_size_t max_chars;
- } output_gadget_t;
- // Note: This function currently assumes it is not passed a '\0' c,
- // or alternatively, that '\0' can be passed to the function in the output
- // gadget. The former assumption holds within the printf library. It also
- // assumes that the output gadget has been properly initialized.
- static inline void putchar_via_gadget(output_gadget_t* gadget, char c)
- {
- printf_size_t write_pos = gadget->pos++;
- // We're _always_ increasing pos, so as to count how may characters
- // _would_ have been written if not for the max_chars limitation
- if (write_pos >= gadget->max_chars) {
- return;
- }
- if (gadget->function != NULL) {
- // No check for c == '\0' .
- gadget->function(c, gadget->extra_function_arg);
- }
- else {
- // it must be the case that gadget->buffer != NULL , due to the constraint
- // on output_gadget_t ; and note we're relying on write_pos being non-negative.
- gadget->buffer[write_pos] = c;
- }
- }
- // Possibly-write the string-terminating '\0' character
- static inline void append_termination_with_gadget(output_gadget_t* gadget)
- {
- if (gadget->function != NULL || gadget->max_chars == 0) {
- return;
- }
- if (gadget->buffer == NULL) {
- return;
- }
- printf_size_t null_char_pos = gadget->pos < gadget->max_chars ? gadget->pos : gadget->max_chars - 1;
- gadget->buffer[null_char_pos] = '\0';
- }
- static inline output_gadget_t discarding_gadget(void)
- {
- output_gadget_t gadget;
- gadget.function = NULL;
- gadget.extra_function_arg = NULL;
- gadget.buffer = NULL;
- gadget.pos = 0;
- gadget.max_chars = 0;
- return gadget;
- }
- static inline output_gadget_t buffer_gadget(char* buffer, size_t buffer_size)
- {
- printf_size_t usable_buffer_size = (buffer_size > PRINTF_MAX_POSSIBLE_BUFFER_SIZE) ?
- PRINTF_MAX_POSSIBLE_BUFFER_SIZE : (printf_size_t) buffer_size;
- output_gadget_t result = discarding_gadget();
- if (buffer != NULL) {
- result.buffer = buffer;
- result.max_chars = usable_buffer_size;
- }
- return result;
- }
- // internal secure strlen
- // @return The length of the string (excluding the terminating 0) limited by 'maxsize'
- // @note strlen uses size_t, but wes only use this function with printf_size_t
- // variables - hence the signature.
- static inline printf_size_t strnlen_s_(const char* str, printf_size_t maxsize)
- {
- const char* s;
- for (s = str; *s && maxsize--; ++s);
- return (printf_size_t)(s - str);
- }
- // internal test if char is a digit (0-9)
- // @return true if char is a digit
- static inline bool is_digit_(char ch)
- {
- return (ch >= '0') && (ch <= '9');
- }
- // internal ASCII string to printf_size_t conversion
- static printf_size_t atou_(const char** str)
- {
- printf_size_t i = 0U;
- while (is_digit_(**str)) {
- i = i * 10U + (printf_size_t)(*((*str)++) - '0');
- }
- return i;
- }
- // output the specified string in reverse, taking care of any zero-padding
- static void out_rev_(output_gadget_t* output, const char* buf, printf_size_t len, printf_size_t width, printf_flags_t flags)
- {
- const printf_size_t start_pos = output->pos;
- // pad spaces up to given width
- if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
- for (printf_size_t i = len; i < width; i++) {
- putchar_via_gadget(output, ' ');
- }
- }
- // reverse string
- while (len) {
- putchar_via_gadget(output, buf[--len]);
- }
- // append pad spaces up to given width
- if (flags & FLAGS_LEFT) {
- while (output->pos - start_pos < width) {
- putchar_via_gadget(output, ' ');
- }
- }
- }
- // Invoked by print_integer after the actual number has been printed, performing necessary
- // work on the number's prefix (as the number is initially printed in reverse order)
- static void print_integer_finalization(output_gadget_t* output, char* buf, printf_size_t len, bool negative, numeric_base_t base, printf_size_t precision, printf_size_t width, printf_flags_t flags)
- {
- printf_size_t unpadded_len = len;
- // pad with leading zeros
- {
- if (!(flags & FLAGS_LEFT)) {
- if (width && (flags & FLAGS_ZEROPAD) && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
- width--;
- }
- while ((flags & FLAGS_ZEROPAD) && (len < width) && (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE)) {
- buf[len++] = '0';
- }
- }
- while ((len < precision) && (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE)) {
- buf[len++] = '0';
- }
- if (base == BASE_OCTAL && (len > unpadded_len)) {
- // Since we've written some zeros, we've satisfied the alternative format leading space requirement
- flags &= ~FLAGS_HASH;
- }
- }
- // handle hash
- if (flags & (FLAGS_HASH | FLAGS_POINTER)) {
- if (!(flags & FLAGS_PRECISION) && len && ((len == precision) || (len == width))) {
- // Let's take back some padding digits to fit in what will eventually
- // be the format-specific prefix
- if (unpadded_len < len) {
- len--; // This should suffice for BASE_OCTAL
- }
- if (len && (base == BASE_HEX || base == BASE_BINARY) && (unpadded_len < len)) {
- len--; // ... and an extra one for 0x or 0b
- }
- }
- if ((base == BASE_HEX) && !(flags & FLAGS_UPPERCASE) && (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE)) {
- buf[len++] = 'x';
- }
- else if ((base == BASE_HEX) && (flags & FLAGS_UPPERCASE) && (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE)) {
- buf[len++] = 'X';
- }
- else if ((base == BASE_BINARY) && (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE)) {
- buf[len++] = 'b';
- }
- if (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE) {
- buf[len++] = '0';
- }
- }
- if (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE) {
- if (negative) {
- buf[len++] = '-';
- }
- else if (flags & FLAGS_PLUS) {
- buf[len++] = '+'; // ignore the space if the '+' exists
- }
- else if (flags & FLAGS_SPACE) {
- buf[len++] = ' ';
- }
- }
- out_rev_(output, buf, len, width, flags);
- }
- // An internal itoa-like function
- static void print_integer(output_gadget_t* output, printf_unsigned_value_t value, bool negative, numeric_base_t base, printf_size_t precision, printf_size_t width, printf_flags_t flags)
- {
- char buf[PKG_VSNPRINTF_INTEGER_BUFFER_SIZE];
- printf_size_t len = 0U;
- if (!value) {
- if ( !(flags & FLAGS_PRECISION) ) {
- buf[len++] = '0';
- flags &= ~FLAGS_HASH;
- // We drop this flag this since either the alternative and regular modes of the specifier
- // don't differ on 0 values, or (in the case of octal) we've already provided the special
- // handling for this mode.
- }
- else if (base == BASE_HEX) {
- flags &= ~FLAGS_HASH;
- // We drop this flag this since either the alternative and regular modes of the specifier
- // don't differ on 0 values
- }
- }
- else {
- do {
- const char digit = (char)(value % base);
- buf[len++] = (char)(digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10);
- value /= base;
- } while (value && (len < PKG_VSNPRINTF_INTEGER_BUFFER_SIZE));
- }
- print_integer_finalization(output, buf, len, negative, base, precision, width, flags);
- }
- #if defined(PKG_VSNPRINTF_SUPPORT_DECIMAL_SPECIFIERS) || defined(PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)
- // Stores a fixed-precision representation of a double relative
- // to a fixed precision (which cannot be determined by examining this structure)
- struct double_components {
- int_fast64_t integral;
- int_fast64_t fractional;
- // ... truncation of the actual fractional part of the double value, scaled
- // by the precision value
- bool is_negative;
- };
- #define NUM_DECIMAL_DIGITS_IN_INT64_T 18
- #define PRINTF_MAX_PRECOMPUTED_POWER_OF_10 NUM_DECIMAL_DIGITS_IN_INT64_T
- static const double powers_of_10[NUM_DECIMAL_DIGITS_IN_INT64_T] = {
- 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08,
- 1e09, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17
- };
- #define PRINTF_MAX_SUPPORTED_PRECISION NUM_DECIMAL_DIGITS_IN_INT64_T - 1
- // Break up a double number - which is known to be a finite non-negative number -
- // into its base-10 parts: integral - before the decimal point, and fractional - after it.
- // Taken the precision into account, but does not change it even internally.
- static struct double_components get_components(double number, printf_size_t precision)
- {
- struct double_components number_;
- number_.is_negative = get_sign_bit(number);
- double abs_number = (number_.is_negative) ? -number : number;
- number_.integral = (int_fast64_t)abs_number;
- double remainder = (abs_number - (double) number_.integral) * powers_of_10[precision];
- number_.fractional = (int_fast64_t)remainder;
- remainder -= (double) number_.fractional;
- if (remainder > 0.5) {
- ++number_.fractional;
- // handle rollover, e.g. case 0.99 with precision 1 is 1.0
- if ((double) number_.fractional >= powers_of_10[precision]) {
- number_.fractional = 0;
- ++number_.integral;
- }
- }
- else if ((remainder == 0.5) && ((number_.fractional == 0U) || (number_.fractional & 1U))) {
- // if halfway, round up if odd OR if last digit is 0
- ++number_.fractional;
- }
- if (precision == 0U) {
- remainder = abs_number - (double) number_.integral;
- if ((!(remainder < 0.5) || (remainder > 0.5)) && (number_.integral & 1)) {
- // exactly 0.5 and ODD, then round up
- // 1.5 -> 2, but 2.5 -> 2
- ++number_.integral;
- }
- }
- return number_;
- }
- #ifdef PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- struct scaling_factor {
- double raw_factor;
- bool multiply; // if true, need to multiply by raw_factor; otherwise need to divide by it
- };
- static double apply_scaling(double num, struct scaling_factor normalization)
- {
- return normalization.multiply ? num * normalization.raw_factor : num / normalization.raw_factor;
- }
- static double unapply_scaling(double normalized, struct scaling_factor normalization)
- {
- #if defined(__GNUC__) && !defined(__ARMCC_VERSION) /* GCC */
- // accounting for a static analysis bug in GCC 6.x and earlier
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
- #endif
- return normalization.multiply ? normalized / normalization.raw_factor : normalized * normalization.raw_factor;
- #if defined(__GNUC__) && !defined(__ARMCC_VERSION) /* GCC */
- #pragma GCC diagnostic pop
- #endif
- }
- static struct scaling_factor update_normalization(struct scaling_factor sf, double extra_multiplicative_factor)
- {
- struct scaling_factor result;
- if (sf.multiply) {
- result.multiply = true;
- result.raw_factor = sf.raw_factor * extra_multiplicative_factor;
- }
- else {
- int factor_exp2 = get_exp2(get_bit_access(sf.raw_factor));
- int extra_factor_exp2 = get_exp2(get_bit_access(extra_multiplicative_factor));
- // Divide the larger-exponent raw raw_factor by the smaller
- if (PRINTF_ABS(factor_exp2) > PRINTF_ABS(extra_factor_exp2)) {
- result.multiply = false;
- result.raw_factor = sf.raw_factor / extra_multiplicative_factor;
- }
- else {
- result.multiply = true;
- result.raw_factor = extra_multiplicative_factor / sf.raw_factor;
- }
- }
- return result;
- }
- static struct double_components get_normalized_components(bool negative, printf_size_t precision, double non_normalized, struct scaling_factor normalization, int floored_exp10)
- {
- struct double_components components;
- components.is_negative = negative;
- double scaled = apply_scaling(non_normalized, normalization);
- bool close_to_representation_extremum = ( (-floored_exp10 + (int) precision) >= DBL_MAX_10_EXP - 1 );
- if (close_to_representation_extremum) {
- // We can't have a normalization factor which also accounts for the precision, i.e. moves
- // some decimal digits into the mantissa, since it's unrepresentable, or nearly unrepresentable.
- // So, we'll give up early on getting extra precision...
- return get_components(negative ? -scaled : scaled, precision);
- }
- components.integral = (int_fast64_t) scaled;
- double remainder = non_normalized - unapply_scaling((double) components.integral, normalization);
- double prec_power_of_10 = powers_of_10[precision];
- struct scaling_factor account_for_precision = update_normalization(normalization, prec_power_of_10);
- double scaled_remainder = apply_scaling(remainder, account_for_precision);
- double rounding_threshold = 0.5;
- components.fractional = (int_fast64_t) scaled_remainder; // when precision == 0, the assigned value should be 0
- scaled_remainder -= (double) components.fractional; //when precision == 0, this will not change scaled_remainder
- components.fractional += (scaled_remainder >= rounding_threshold);
- if (scaled_remainder == rounding_threshold) {
- // banker's rounding: Round towards the even number (making the mean error 0)
- components.fractional &= ~((int_fast64_t) 0x1);
- }
- // handle rollover, e.g. the case of 0.99 with precision 1 becoming (0,100),
- // and must then be corrected into (1, 0).
- // Note: for precision = 0, this will "translate" the rounding effect from
- // the fractional part to the integral part where it should actually be
- // felt (as prec_power_of_10 is 1)
- if ((double) components.fractional >= prec_power_of_10) {
- components.fractional = 0;
- ++components.integral;
- }
- return components;
- }
- #endif // PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- static void print_broken_up_decimal(
- struct double_components number_, output_gadget_t* output, printf_size_t precision,
- printf_size_t width, printf_flags_t flags, char *buf, printf_size_t len)
- {
- if (precision != 0U) {
- // do fractional part, as an unsigned number
- printf_size_t count = precision;
- // %g/%G mandates we skip the trailing 0 digits...
- if ((flags & FLAGS_ADAPT_EXP) && !(flags & FLAGS_HASH) && (number_.fractional > 0)) {
- while(true) {
- int_fast64_t digit = number_.fractional % 10U;
- if (digit != 0) {
- break;
- }
- --count;
- number_.fractional /= 10U;
- }
- // ... and even the decimal point if there are no
- // non-zero fractional part digits (see below)
- }
- if (number_.fractional > 0 || !(flags & FLAGS_ADAPT_EXP) || (flags & FLAGS_HASH) ) {
- while (len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE) {
- --count;
- buf[len++] = (char)('0' + number_.fractional % 10U);
- if (!(number_.fractional /= 10U)) {
- break;
- }
- }
- // add extra 0s
- while ((len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE) && (count > 0U)) {
- buf[len++] = '0';
- --count;
- }
- if (len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE) {
- buf[len++] = '.';
- }
- }
- }
- else {
- if ((flags & FLAGS_HASH) && (len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE)) {
- buf[len++] = '.';
- }
- }
- // Write the integer part of the number (it comes after the fractional
- // since the character order is reversed)
- while (len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE) {
- buf[len++] = (char)('0' + (number_.integral % 10));
- if (!(number_.integral /= 10)) {
- break;
- }
- }
- // pad leading zeros
- if (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD)) {
- if (width && (number_.is_negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
- width--;
- }
- while ((len < width) && (len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE)) {
- buf[len++] = '0';
- }
- }
- if (len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE) {
- if (number_.is_negative) {
- buf[len++] = '-';
- }
- else if (flags & FLAGS_PLUS) {
- buf[len++] = '+'; // ignore the space if the '+' exists
- }
- else if (flags & FLAGS_SPACE) {
- buf[len++] = ' ';
- }
- }
- out_rev_(output, buf, len, width, flags);
- }
- // internal ftoa for fixed decimal floating point
- static void print_decimal_number(output_gadget_t* output, double number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char* buf, printf_size_t len)
- {
- struct double_components value_ = get_components(number, precision);
- print_broken_up_decimal(value_, output, precision, width, flags, buf, len);
- }
- #ifdef PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- // A floor function - but one which only works for numbers whose
- // floor value is representable by an int.
- static int bastardized_floor(double x)
- {
- if (x >= 0) { return (int) x; }
- int n = (int) x;
- return ( ((double) n) == x ) ? n : n-1;
- }
- // Computes the base-10 logarithm of the input number - which must be an actual
- // positive number (not infinity or NaN, nor a sub-normal)
- static double log10_of_positive(double positive_number)
- {
- // The implementation follows David Gay (https://www.ampl.com/netlib/fp/dtoa.c).
- //
- // Since log_10 ( M * 2^x ) = log_10(M) + x , we can separate the components of
- // our input number, and need only solve log_10(M) for M between 1 and 2 (as
- // the base-2 mantissa is always 1-point-something). In that limited range, a
- // Taylor series expansion of log10(x) should serve us well enough; and we'll
- // take the mid-point, 1.5, as the point of expansion.
- double_with_bit_access dwba = get_bit_access(positive_number);
- // based on the algorithm by David Gay (https://www.ampl.com/netlib/fp/dtoa.c)
- int exp2 = get_exp2(dwba);
- // drop the exponent, so dwba.F comes into the range [1,2)
- dwba.U = (dwba.U & (((double_uint_t) (1) << DOUBLE_STORED_MANTISSA_BITS) - 1U)) |
- ((double_uint_t) DOUBLE_BASE_EXPONENT << DOUBLE_STORED_MANTISSA_BITS);
- double z = (dwba.F - 1.5);
- return (
- // Taylor expansion around 1.5:
- 0.1760912590556812420 // Expansion term 0: ln(1.5) / ln(10)
- + z * 0.2895296546021678851 // Expansion term 1: (M - 1.5) * 2/3 / ln(10)
- #if PKG_VSNPRINTF_LOG10_TAYLOR_TERMS > 2
- - z*z * 0.0965098848673892950 // Expansion term 2: (M - 1.5)^2 * 2/9 / ln(10)
- #if PKG_VSNPRINTF_LOG10_TAYLOR_TERMS > 3
- + z*z*z * 0.0428932821632841311 // Expansion term 2: (M - 1.5)^3 * 8/81 / ln(10)
- #endif
- #endif
- // exact log_2 of the exponent x, with logarithm base change
- + exp2 * 0.30102999566398119521 // = exp2 * log_10(2) = exp2 * ln(2)/ln(10)
- );
- }
- static double pow10_of_int(int floored_exp10)
- {
- // A crude hack for avoiding undesired behavior with barely-normal or slightly-subnormal values.
- if (floored_exp10 == DOUBLE_MAX_SUBNORMAL_EXPONENT_OF_10) {
- return DOUBLE_MAX_SUBNORMAL_POWER_OF_10;
- }
- // Compute 10^(floored_exp10) but (try to) make sure that doesn't overflow
- double_with_bit_access dwba;
- int exp2 = bastardized_floor(floored_exp10 * 3.321928094887362 + 0.5);
- const double z = floored_exp10 * 2.302585092994046 - exp2 * 0.6931471805599453;
- const double z2 = z * z;
- dwba.U = ((double_uint_t)(exp2) + DOUBLE_BASE_EXPONENT) << DOUBLE_STORED_MANTISSA_BITS;
- // compute exp(z) using continued fractions,
- // see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex
- dwba.F *= 1 + 2 * z / (2 - z + (z2 / (6 + (z2 / (10 + z2 / 14)))));
- return dwba.F;
- }
- static void print_exponential_number(output_gadget_t* output, double number, printf_size_t precision, printf_size_t width, printf_flags_t flags, char* buf, printf_size_t len)
- {
- const bool negative = get_sign_bit(number);
- // This number will decrease gradually (by factors of 10) as we "extract" the exponent out of it
- double abs_number = negative ? -number : number;
- int floored_exp10;
- bool abs_exp10_covered_by_powers_table;
- struct scaling_factor normalization;
- // Determine the decimal exponent
- if (abs_number == 0.0) {
- // TODO: This is a special-case for 0.0 (and -0.0); but proper handling is required for denormals more generally.
- floored_exp10 = 0; // ... and no need to set a normalization factor or check the powers table
- }
- else {
- double exp10 = log10_of_positive(abs_number);
- floored_exp10 = bastardized_floor(exp10);
- double p10 = pow10_of_int(floored_exp10);
- // correct for rounding errors
- if (abs_number < p10) {
- floored_exp10--;
- p10 /= 10;
- }
- abs_exp10_covered_by_powers_table = PRINTF_ABS(floored_exp10) < PRINTF_MAX_PRECOMPUTED_POWER_OF_10;
- normalization.raw_factor = abs_exp10_covered_by_powers_table ? powers_of_10[PRINTF_ABS(floored_exp10)] : p10;
- }
- // We now begin accounting for the widths of the two parts of our printed field:
- // the decimal part after decimal exponent extraction, and the base-10 exponent part.
- // For both of these, the value of 0 has a special meaning, but not the same one:
- // a 0 exponent-part width means "don't print the exponent"; a 0 decimal-part width
- // means "use as many characters as necessary".
- bool fall_back_to_decimal_only_mode = false;
- if (flags & FLAGS_ADAPT_EXP) {
- int required_significant_digits = (precision == 0) ? 1 : (int) precision;
- // Should we want to fall-back to "%f" mode, and only print the decimal part?
- fall_back_to_decimal_only_mode = (floored_exp10 >= -4 && floored_exp10 < required_significant_digits);
- // Now, let's adjust the precision
- // This also decided how we adjust the precision value - as in "%g" mode,
- // "precision" is the number of _significant digits_, and this is when we "translate"
- // the precision value to an actual number of decimal digits.
- int precision_ = fall_back_to_decimal_only_mode ?
- (int) precision - 1 - floored_exp10 :
- (int) precision - 1; // the presence of the exponent ensures only one significant digit comes before the decimal point
- precision = (precision_ > 0 ? (unsigned) precision_ : 0U);
- flags |= FLAGS_PRECISION; // make sure print_broken_up_decimal respects our choice above
- }
- normalization.multiply = (floored_exp10 < 0 && abs_exp10_covered_by_powers_table);
- bool should_skip_normalization = (fall_back_to_decimal_only_mode || floored_exp10 == 0);
- struct double_components decimal_part_components =
- should_skip_normalization ?
- get_components(negative ? -abs_number : abs_number, precision) :
- get_normalized_components(negative, precision, abs_number, normalization, floored_exp10);
- // Account for roll-over, e.g. rounding from 9.99 to 100.0 - which effects
- // the exponent and may require additional tweaking of the parts
- if (fall_back_to_decimal_only_mode) {
- if ((flags & FLAGS_ADAPT_EXP) && floored_exp10 >= -1 && decimal_part_components.integral == powers_of_10[floored_exp10 + 1]) {
- floored_exp10++; // Not strictly necessary, since floored_exp10 is no longer really used
- precision--;
- // ... and it should already be the case that decimal_part_components.fractional == 0
- }
- // TODO: What about rollover strictly within the fractional part?
- }
- else {
- if (decimal_part_components.integral >= 10) {
- floored_exp10++;
- decimal_part_components.integral = 1;
- decimal_part_components.fractional = 0;
- }
- }
- // the floored_exp10 format is "E%+03d" and largest possible floored_exp10 value for a 64-bit double
- // is "307" (for 2^1023), so we set aside 4-5 characters overall
- printf_size_t exp10_part_width = fall_back_to_decimal_only_mode ? 0U : (PRINTF_ABS(floored_exp10) < 100) ? 4U : 5U;
- printf_size_t decimal_part_width =
- ((flags & FLAGS_LEFT) && exp10_part_width) ?
- // We're padding on the right, so the width constraint is the exponent part's
- // problem, not the decimal part's, so we'll use as many characters as we need:
- 0U :
- // We're padding on the left; so the width constraint is the decimal part's
- // problem. Well, can both the decimal part and the exponent part fit within our overall width?
- ((width > exp10_part_width) ?
- // Yes, so we limit our decimal part's width.
- // (Note this is trivially valid even if we've fallen back to "%f" mode)
- width - exp10_part_width :
- // No; we just give up on any restriction on the decimal part and use as many
- // characters as we need
- 0U);
- const printf_size_t printed_exponential_start_pos = output->pos;
- print_broken_up_decimal(decimal_part_components, output, precision, decimal_part_width, flags, buf, len);
- if (! fall_back_to_decimal_only_mode) {
- putchar_via_gadget(output, (flags & FLAGS_UPPERCASE) ? 'E' : 'e');
- print_integer(output,
- ABS_FOR_PRINTING(floored_exp10),
- floored_exp10 < 0, 10, 0, exp10_part_width - 1,
- FLAGS_ZEROPAD | FLAGS_PLUS);
- if (flags & FLAGS_LEFT) {
- // We need to right-pad with spaces to meet the width requirement
- while (output->pos - printed_exponential_start_pos < width) {
- putchar_via_gadget(output, ' ');
- }
- }
- }
- }
- #endif // PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- static void print_floating_point(output_gadget_t* output, double value, printf_size_t precision, printf_size_t width, printf_flags_t flags, bool prefer_exponential)
- {
- char buf[PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE];
- printf_size_t len = 0U;
- // test for special values
- if (value != value) {
- out_rev_(output, "nan", 3, width, flags);
- return;
- }
- if (value < -DBL_MAX) {
- out_rev_(output, "fni-", 4, width, flags);
- return;
- }
- if (value > DBL_MAX) {
- out_rev_(output, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? 4U : 3U, width, flags);
- return;
- }
- if (!prefer_exponential &&
- ((value > PRINTF_FLOAT_NOTATION_THRESHOLD) || (value < -PRINTF_FLOAT_NOTATION_THRESHOLD))) {
- // The required behavior of standard printf is to print _every_ integral-part digit -- which could mean
- // printing hundreds of characters, overflowing any fixed internal buffer and necessitating a more complicated
- // implementation.
- #ifdef PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- print_exponential_number(output, value, precision, width, flags, buf, len);
- #endif
- return;
- }
- // set default precision, if not set explicitly
- if (!(flags & FLAGS_PRECISION)) {
- precision = PKG_VSNPRINTF_DEFAULT_FLOAT_PRECISION;
- }
- // limit precision so that our integer holding the fractional part does not overflow
- while ((len < PKG_VSNPRINTF_DECIMAL_BUFFER_SIZE) && (precision > PRINTF_MAX_SUPPORTED_PRECISION)) {
- buf[len++] = '0'; // This respects the precision in terms of result length only
- precision--;
- }
- #ifdef PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- if (prefer_exponential)
- print_exponential_number(output, value, precision, width, flags, buf, len);
- else
- #endif
- print_decimal_number(output, value, precision, width, flags, buf, len);
- }
- #endif // (PKG_VSNPRINTF_SUPPORT_DECIMAL_SPECIFIERS || PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS)
- // Advances the format pointer past the flags, and returns the parsed flags
- // due to the characters passed
- static printf_flags_t parse_flags(const char** format)
- {
- printf_flags_t flags = 0U;
- do {
- switch (**format) {
- case '0': flags |= FLAGS_ZEROPAD; (*format)++; break;
- case '-': flags |= FLAGS_LEFT; (*format)++; break;
- case '+': flags |= FLAGS_PLUS; (*format)++; break;
- case ' ': flags |= FLAGS_SPACE; (*format)++; break;
- case '#': flags |= FLAGS_HASH; (*format)++; break;
- default : return flags;
- }
- } while (true);
- }
- static inline void format_string_loop(output_gadget_t* output, const char* format, va_list args)
- {
- #ifdef PKG_VSNPRINTF_CHECK_FOR_NUL_IN_FORMAT_SPECIFIER
- #define ADVANCE_IN_FORMAT_STRING(cptr_) do { (cptr_)++; if (!*(cptr_)) return; } while(0)
- #else
- #define ADVANCE_IN_FORMAT_STRING(cptr_) (cptr_)++
- #endif
- while (*format)
- {
- if (*format != '%') {
- // A regular content character
- putchar_via_gadget(output, *format);
- format++;
- continue;
- }
- // We're parsing a format specifier: %[flags][width][.precision][length]
- ADVANCE_IN_FORMAT_STRING(format);
- printf_flags_t flags = parse_flags(&format);
- // evaluate width field
- printf_size_t width = 0U;
- if (is_digit_(*format)) {
- width = (printf_size_t) atou_(&format);
- }
- else if (*format == '*') {
- const int w = va_arg(args, int);
- if (w < 0) {
- flags |= FLAGS_LEFT; // reverse padding
- width = (printf_size_t)-w;
- }
- else {
- width = (printf_size_t)w;
- }
- ADVANCE_IN_FORMAT_STRING(format);
- }
- // evaluate precision field
- printf_size_t precision = 0U;
- if (*format == '.') {
- flags |= FLAGS_PRECISION;
- ADVANCE_IN_FORMAT_STRING(format);
- if (is_digit_(*format)) {
- precision = (printf_size_t) atou_(&format);
- }
- else if (*format == '*') {
- const int precision_ = va_arg(args, int);
- precision = precision_ > 0 ? (printf_size_t) precision_ : 0U;
- ADVANCE_IN_FORMAT_STRING(format);
- }
- }
- // evaluate length field
- switch (*format) {
- #ifdef PKG_VSNPRINTF_SUPPORT_MSVC_STYLE_INTEGER_SPECIFIERS
- case 'I' : {
- ADVANCE_IN_FORMAT_STRING(format);
- // Greedily parse for size in bits: 8, 16, 32 or 64
- switch(*format) {
- case '8': flags |= FLAGS_INT8;
- ADVANCE_IN_FORMAT_STRING(format);
- break;
- case '1':
- ADVANCE_IN_FORMAT_STRING(format);
- if (*format == '6') { format++; flags |= FLAGS_INT16; }
- break;
- case '3':
- ADVANCE_IN_FORMAT_STRING(format);
- if (*format == '2') { ADVANCE_IN_FORMAT_STRING(format); flags |= FLAGS_INT32; }
- break;
- case '6':
- ADVANCE_IN_FORMAT_STRING(format);
- if (*format == '4') { ADVANCE_IN_FORMAT_STRING(format); flags |= FLAGS_INT64; }
- break;
- default: break;
- }
- break;
- }
- #endif
- case 'l' :
- flags |= FLAGS_LONG;
- ADVANCE_IN_FORMAT_STRING(format);
- if (*format == 'l') {
- flags |= FLAGS_LONG_LONG;
- ADVANCE_IN_FORMAT_STRING(format);
- }
- break;
- case 'h' :
- flags |= FLAGS_SHORT;
- ADVANCE_IN_FORMAT_STRING(format);
- if (*format == 'h') {
- flags |= FLAGS_CHAR;
- ADVANCE_IN_FORMAT_STRING(format);
- }
- break;
- case 't' :
- flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
- ADVANCE_IN_FORMAT_STRING(format);
- break;
- case 'j' :
- flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
- ADVANCE_IN_FORMAT_STRING(format);
- break;
- case 'z' :
- flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
- ADVANCE_IN_FORMAT_STRING(format);
- break;
- default:
- break;
- }
- // evaluate specifier
- switch (*format) {
- case 'd' :
- case 'i' :
- case 'u' :
- case 'x' :
- case 'X' :
- case 'o' :
- case 'b' : {
- if (*format == 'd' || *format == 'i') {
- flags |= FLAGS_SIGNED;
- }
- numeric_base_t base;
- if (*format == 'x' || *format == 'X') {
- base = BASE_HEX;
- }
- else if (*format == 'o') {
- base = BASE_OCTAL;
- }
- else if (*format == 'b') {
- base = BASE_BINARY;
- }
- else {
- base = BASE_DECIMAL;
- flags &= ~FLAGS_HASH; // decimal integers have no alternative presentation
- }
- if (*format == 'X') {
- flags |= FLAGS_UPPERCASE;
- }
- format++;
- // ignore '0' flag when precision is given
- if (flags & FLAGS_PRECISION) {
- flags &= ~FLAGS_ZEROPAD;
- }
- if (flags & FLAGS_SIGNED) {
- // A signed specifier: d, i or possibly I + bit size if enabled
- if (flags & FLAGS_LONG_LONG) {
- #ifdef PKG_VSNPRINTF_SUPPORT_LONG_LONG
- const long long value = va_arg(args, long long);
- print_integer(output, ABS_FOR_PRINTING(value), value < 0, base, precision, width, flags);
- #endif
- }
- else if (flags & FLAGS_LONG) {
- const long value = va_arg(args, long);
- print_integer(output, ABS_FOR_PRINTING(value), value < 0, base, precision, width, flags);
- }
- else {
- // We never try to interpret the argument as something potentially-smaller than int,
- // due to integer promotion rules: Even if the user passed a short int, short unsigned
- // etc. - these will come in after promotion, as int's (or unsigned for the case of
- // short unsigned when it has the same size as int)
- const int value =
- (flags & FLAGS_CHAR) ? (signed char) va_arg(args, int) :
- (flags & FLAGS_SHORT) ? (short int) va_arg(args, int) :
- va_arg(args, int);
- print_integer(output, ABS_FOR_PRINTING(value), value < 0, base, precision, width, flags);
- }
- }
- else {
- // An unsigned specifier: u, x, X, o, b
- flags &= ~(FLAGS_PLUS | FLAGS_SPACE);
- if (flags & FLAGS_LONG_LONG) {
- #ifdef PKG_VSNPRINTF_SUPPORT_LONG_LONG
- print_integer(output, (printf_unsigned_value_t) va_arg(args, unsigned long long), false, base, precision, width, flags);
- #endif
- }
- else if (flags & FLAGS_LONG) {
- print_integer(output, (printf_unsigned_value_t) va_arg(args, unsigned long), false, base, precision, width, flags);
- }
- else {
- const unsigned int value =
- (flags & FLAGS_CHAR) ? (unsigned char)va_arg(args, unsigned int) :
- (flags & FLAGS_SHORT) ? (unsigned short int)va_arg(args, unsigned int) :
- va_arg(args, unsigned int);
- print_integer(output, (printf_unsigned_value_t) value, false, base, precision, width, flags);
- }
- }
- break;
- }
- #ifdef PKG_VSNPRINTF_SUPPORT_DECIMAL_SPECIFIERS
- case 'f' :
- case 'F' :
- if (*format == 'F') flags |= FLAGS_UPPERCASE;
- print_floating_point(output, va_arg(args, double), precision, width, flags, PRINTF_PREFER_DECIMAL);
- format++;
- break;
- #endif
- #ifdef PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- case 'e':
- case 'E':
- case 'g':
- case 'G':
- if ((*format == 'g')||(*format == 'G')) flags |= FLAGS_ADAPT_EXP;
- if ((*format == 'E')||(*format == 'G')) flags |= FLAGS_UPPERCASE;
- print_floating_point(output, va_arg(args, double), precision, width, flags, PRINTF_PREFER_EXPONENTIAL);
- format++;
- break;
- #endif // PKG_VSNPRINTF_SUPPORT_EXPONENTIAL_SPECIFIERS
- case 'c' : {
- printf_size_t l = 1U;
- // pre padding
- if (!(flags & FLAGS_LEFT)) {
- while (l++ < width) {
- putchar_via_gadget(output, ' ');
- }
- }
- // char output
- putchar_via_gadget(output, (char) va_arg(args, int) );
- // post padding
- if (flags & FLAGS_LEFT) {
- while (l++ < width) {
- putchar_via_gadget(output, ' ');
- }
- }
- format++;
- break;
- }
- case 's' : {
- const char* p = va_arg(args, char*);
- if (p == NULL) {
- out_rev_(output, ")llun(", 6, width, flags);
- }
- else {
- printf_size_t l = strnlen_s_(p, precision ? precision : PRINTF_MAX_POSSIBLE_BUFFER_SIZE);
- // pre padding
- if (flags & FLAGS_PRECISION) {
- l = (l < precision ? l : precision);
- }
- if (!(flags & FLAGS_LEFT)) {
- while (l++ < width) {
- putchar_via_gadget(output, ' ');
- }
- }
- // string output
- while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision)) {
- putchar_via_gadget(output, *(p++));
- --precision;
- }
- // post padding
- if (flags & FLAGS_LEFT) {
- while (l++ < width) {
- putchar_via_gadget(output, ' ');
- }
- }
- }
- format++;
- break;
- }
- case 'p' : {
- width = sizeof(void*) * 2U + 2; // 2 hex chars per byte + the "0x" prefix
- flags |= FLAGS_ZEROPAD | FLAGS_POINTER;
- uintptr_t value = (uintptr_t)va_arg(args, void*);
- (value == (uintptr_t) NULL) ?
- out_rev_(output, ")lin(", 5, width, flags) :
- print_integer(output, (printf_unsigned_value_t) value, false, BASE_HEX, precision, width, flags);
- format++;
- break;
- }
- case '%' :
- putchar_via_gadget(output, '%');
- format++;
- break;
- // Many people prefer to disable support for %n, as it lets the caller
- // engineer a write to an arbitrary location, of a value the caller
- // effectively controls - which could be a security concern in some cases.
- #ifdef PKG_VSNPRINTF_SUPPORT_WRITEBACK_SPECIFIER
- case 'n' : {
- if (flags & FLAGS_CHAR) *(va_arg(args, char*)) = (char) output->pos;
- else if (flags & FLAGS_SHORT) *(va_arg(args, short*)) = (short) output->pos;
- else if (flags & FLAGS_LONG) *(va_arg(args, long*)) = (long) output->pos;
- #ifdef PKG_VSNPRINTF_SUPPORT_LONG_LONG
- else if (flags & FLAGS_LONG_LONG) *(va_arg(args, long long*)) = (long long int) output->pos;
- #endif // PKG_VSNPRINTF_SUPPORT_LONG_LONG
- else *(va_arg(args, int*)) = (int) output->pos;
- format++;
- break;
- }
- #endif // PKG_VSNPRINTF_SUPPORT_WRITEBACK_SPECIFIER
- default :
- putchar_via_gadget(output, *format);
- format++;
- break;
- }
- }
- }
- // internal vsnprintf - used for implementing _all library functions
- static int vsnprintf_impl(output_gadget_t* output, const char* format, va_list args)
- {
- // Note: The library only calls vsnprintf_impl() with output->pos being 0. However, it is
- // possible to call this function with a non-zero pos value for some "remedial printing".
- format_string_loop(output, format, args);
- // termination
- append_termination_with_gadget(output);
- // return written chars without terminating \0
- return (int)output->pos;
- }
- ///////////////////////////////////////////////////////////////////////////////
- /**
- * This function will fill a formatted string to buffer.
- *
- * @param buf is the buffer to save formatted string.
- *
- * @param size is the size of buffer.
- *
- * @param fmt is the format parameters.
- *
- * @param args is a list of variable parameters.
- *
- * @return The number of characters actually written to buffer.
- */
- #if (RTTHREAD_VERSION >= 40100) || (RTTHREAD_VERSION < 40000 && RTTHREAD_VERSION >= 30106)
- int rt_vsnprintf(char *buf, rt_size_t size, const char *fmt, va_list args)
- #else
- rt_int32_t rt_vsnprintf(char *buf, rt_size_t size, const char *fmt, va_list args)
- #endif
- {
- output_gadget_t gadget = buffer_gadget(buf, size);
- return vsnprintf_impl(&gadget, fmt, args);
- }
- #ifdef RT_VSNPRINTF_FULL_REPLACING_VSNPRINTF
- int vsnprintf(char * s, size_t n, const char * format, va_list arg)
- {
- return rt_vsnprintf(s, n, format, arg);
- }
- #endif
- #ifdef RT_VSNPRINTF_FULL_REPLACING_VSPRINTF
- int vsprintf(char * s, const char * format, va_list arg)
- {
- return rt_vsprintf(s, format, arg);
- }
- #endif
|