| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094 |
- /*
- ** 2010 February 1
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- **
- ** This file contains the implementation of a write-ahead log (WAL) used in
- ** "journal_mode=WAL" mode.
- **
- ** WRITE-AHEAD LOG (WAL) FILE FORMAT
- **
- ** A WAL file consists of a header followed by zero or more "frames".
- ** Each frame records the revised content of a single page from the
- ** database file. All changes to the database are recorded by writing
- ** frames into the WAL. Transactions commit when a frame is written that
- ** contains a commit marker. A single WAL can and usually does record
- ** multiple transactions. Periodically, the content of the WAL is
- ** transferred back into the database file in an operation called a
- ** "checkpoint".
- **
- ** A single WAL file can be used multiple times. In other words, the
- ** WAL can fill up with frames and then be checkpointed and then new
- ** frames can overwrite the old ones. A WAL always grows from beginning
- ** toward the end. Checksums and counters attached to each frame are
- ** used to determine which frames within the WAL are valid and which
- ** are leftovers from prior checkpoints.
- **
- ** The WAL header is 32 bytes in size and consists of the following eight
- ** big-endian 32-bit unsigned integer values:
- **
- ** 0: Magic number. 0x377f0682 or 0x377f0683
- ** 4: File format version. Currently 3007000
- ** 8: Database page size. Example: 1024
- ** 12: Checkpoint sequence number
- ** 16: Salt-1, random integer incremented with each checkpoint
- ** 20: Salt-2, a different random integer changing with each ckpt
- ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
- ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
- **
- ** Immediately following the wal-header are zero or more frames. Each
- ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
- ** of page data. The frame-header is six big-endian 32-bit unsigned
- ** integer values, as follows:
- **
- ** 0: Page number.
- ** 4: For commit records, the size of the database image in pages
- ** after the commit. For all other records, zero.
- ** 8: Salt-1 (copied from the header)
- ** 12: Salt-2 (copied from the header)
- ** 16: Checksum-1.
- ** 20: Checksum-2.
- **
- ** A frame is considered valid if and only if the following conditions are
- ** true:
- **
- ** (1) The salt-1 and salt-2 values in the frame-header match
- ** salt values in the wal-header
- **
- ** (2) The checksum values in the final 8 bytes of the frame-header
- ** exactly match the checksum computed consecutively on the
- ** WAL header and the first 8 bytes and the content of all frames
- ** up to and including the current frame.
- **
- ** The checksum is computed using 32-bit big-endian integers if the
- ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
- ** is computed using little-endian if the magic number is 0x377f0682.
- ** The checksum values are always stored in the frame header in a
- ** big-endian format regardless of which byte order is used to compute
- ** the checksum. The checksum is computed by interpreting the input as
- ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
- ** algorithm used for the checksum is as follows:
- **
- ** for i from 0 to n-1 step 2:
- ** s0 += x[i] + s1;
- ** s1 += x[i+1] + s0;
- ** endfor
- **
- ** Note that s0 and s1 are both weighted checksums using fibonacci weights
- ** in reverse order (the largest fibonacci weight occurs on the first element
- ** of the sequence being summed.) The s1 value spans all 32-bit
- ** terms of the sequence whereas s0 omits the final term.
- **
- ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
- ** WAL is transferred into the database, then the database is VFS.xSync-ed.
- ** The VFS.xSync operations serve as write barriers - all writes launched
- ** before the xSync must complete before any write that launches after the
- ** xSync begins.
- **
- ** After each checkpoint, the salt-1 value is incremented and the salt-2
- ** value is randomized. This prevents old and new frames in the WAL from
- ** being considered valid at the same time and being checkpointing together
- ** following a crash.
- **
- ** READER ALGORITHM
- **
- ** To read a page from the database (call it page number P), a reader
- ** first checks the WAL to see if it contains page P. If so, then the
- ** last valid instance of page P that is a followed by a commit frame
- ** or is a commit frame itself becomes the value read. If the WAL
- ** contains no copies of page P that are valid and which are a commit
- ** frame or are followed by a commit frame, then page P is read from
- ** the database file.
- **
- ** To start a read transaction, the reader records the index of the last
- ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
- ** for all subsequent read operations. New transactions can be appended
- ** to the WAL, but as long as the reader uses its original mxFrame value
- ** and ignores the newly appended content, it will see a consistent snapshot
- ** of the database from a single point in time. This technique allows
- ** multiple concurrent readers to view different versions of the database
- ** content simultaneously.
- **
- ** The reader algorithm in the previous paragraphs works correctly, but
- ** because frames for page P can appear anywhere within the WAL, the
- ** reader has to scan the entire WAL looking for page P frames. If the
- ** WAL is large (multiple megabytes is typical) that scan can be slow,
- ** and read performance suffers. To overcome this problem, a separate
- ** data structure called the wal-index is maintained to expedite the
- ** search for frames of a particular page.
- **
- ** WAL-INDEX FORMAT
- **
- ** Conceptually, the wal-index is shared memory, though VFS implementations
- ** might choose to implement the wal-index using a mmapped file. Because
- ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
- ** on a network filesystem. All users of the database must be able to
- ** share memory.
- **
- ** The wal-index is transient. After a crash, the wal-index can (and should
- ** be) reconstructed from the original WAL file. In fact, the VFS is required
- ** to either truncate or zero the header of the wal-index when the last
- ** connection to it closes. Because the wal-index is transient, it can
- ** use an architecture-specific format; it does not have to be cross-platform.
- ** Hence, unlike the database and WAL file formats which store all values
- ** as big endian, the wal-index can store multi-byte values in the native
- ** byte order of the host computer.
- **
- ** The purpose of the wal-index is to answer this question quickly: Given
- ** a page number P and a maximum frame index M, return the index of the
- ** last frame in the wal before frame M for page P in the WAL, or return
- ** NULL if there are no frames for page P in the WAL prior to M.
- **
- ** The wal-index consists of a header region, followed by an one or
- ** more index blocks.
- **
- ** The wal-index header contains the total number of frames within the WAL
- ** in the mxFrame field.
- **
- ** Each index block except for the first contains information on
- ** HASHTABLE_NPAGE frames. The first index block contains information on
- ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
- ** HASHTABLE_NPAGE are selected so that together the wal-index header and
- ** first index block are the same size as all other index blocks in the
- ** wal-index.
- **
- ** Each index block contains two sections, a page-mapping that contains the
- ** database page number associated with each wal frame, and a hash-table
- ** that allows readers to query an index block for a specific page number.
- ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
- ** for the first index block) 32-bit page numbers. The first entry in the
- ** first index-block contains the database page number corresponding to the
- ** first frame in the WAL file. The first entry in the second index block
- ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
- ** the log, and so on.
- **
- ** The last index block in a wal-index usually contains less than the full
- ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
- ** depending on the contents of the WAL file. This does not change the
- ** allocated size of the page-mapping array - the page-mapping array merely
- ** contains unused entries.
- **
- ** Even without using the hash table, the last frame for page P
- ** can be found by scanning the page-mapping sections of each index block
- ** starting with the last index block and moving toward the first, and
- ** within each index block, starting at the end and moving toward the
- ** beginning. The first entry that equals P corresponds to the frame
- ** holding the content for that page.
- **
- ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
- ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
- ** hash table for each page number in the mapping section, so the hash
- ** table is never more than half full. The expected number of collisions
- ** prior to finding a match is 1. Each entry of the hash table is an
- ** 1-based index of an entry in the mapping section of the same
- ** index block. Let K be the 1-based index of the largest entry in
- ** the mapping section. (For index blocks other than the last, K will
- ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
- ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
- ** contain a value of 0.
- **
- ** To look for page P in the hash table, first compute a hash iKey on
- ** P as follows:
- **
- ** iKey = (P * 383) % HASHTABLE_NSLOT
- **
- ** Then start scanning entries of the hash table, starting with iKey
- ** (wrapping around to the beginning when the end of the hash table is
- ** reached) until an unused hash slot is found. Let the first unused slot
- ** be at index iUnused. (iUnused might be less than iKey if there was
- ** wrap-around.) Because the hash table is never more than half full,
- ** the search is guaranteed to eventually hit an unused entry. Let
- ** iMax be the value between iKey and iUnused, closest to iUnused,
- ** where aHash[iMax]==P. If there is no iMax entry (if there exists
- ** no hash slot such that aHash[i]==p) then page P is not in the
- ** current index block. Otherwise the iMax-th mapping entry of the
- ** current index block corresponds to the last entry that references
- ** page P.
- **
- ** A hash search begins with the last index block and moves toward the
- ** first index block, looking for entries corresponding to page P. On
- ** average, only two or three slots in each index block need to be
- ** examined in order to either find the last entry for page P, or to
- ** establish that no such entry exists in the block. Each index block
- ** holds over 4000 entries. So two or three index blocks are sufficient
- ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
- ** comparisons (on average) suffice to either locate a frame in the
- ** WAL or to establish that the frame does not exist in the WAL. This
- ** is much faster than scanning the entire 10MB WAL.
- **
- ** Note that entries are added in order of increasing K. Hence, one
- ** reader might be using some value K0 and a second reader that started
- ** at a later time (after additional transactions were added to the WAL
- ** and to the wal-index) might be using a different value K1, where K1>K0.
- ** Both readers can use the same hash table and mapping section to get
- ** the correct result. There may be entries in the hash table with
- ** K>K0 but to the first reader, those entries will appear to be unused
- ** slots in the hash table and so the first reader will get an answer as
- ** if no values greater than K0 had ever been inserted into the hash table
- ** in the first place - which is what reader one wants. Meanwhile, the
- ** second reader using K1 will see additional values that were inserted
- ** later, which is exactly what reader two wants.
- **
- ** When a rollback occurs, the value of K is decreased. Hash table entries
- ** that correspond to frames greater than the new K value are removed
- ** from the hash table at this point.
- */
- #ifndef SQLITE_OMIT_WAL
- #include "wal.h"
- /*
- ** Trace output macros
- */
- #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
- int sqlite3WalTrace = 0;
- # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
- #else
- # define WALTRACE(X)
- #endif
- /*
- ** The maximum (and only) versions of the wal and wal-index formats
- ** that may be interpreted by this version of SQLite.
- **
- ** If a client begins recovering a WAL file and finds that (a) the checksum
- ** values in the wal-header are correct and (b) the version field is not
- ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
- **
- ** Similarly, if a client successfully reads a wal-index header (i.e. the
- ** checksum test is successful) and finds that the version field is not
- ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
- ** returns SQLITE_CANTOPEN.
- */
- #define WAL_MAX_VERSION 3007000
- #define WALINDEX_MAX_VERSION 3007000
- /*
- ** Indices of various locking bytes. WAL_NREADER is the number
- ** of available reader locks and should be at least 3.
- */
- #define WAL_WRITE_LOCK 0
- #define WAL_ALL_BUT_WRITE 1
- #define WAL_CKPT_LOCK 1
- #define WAL_RECOVER_LOCK 2
- #define WAL_READ_LOCK(I) (3+(I))
- #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
- /* Object declarations */
- typedef struct WalIndexHdr WalIndexHdr;
- typedef struct WalIterator WalIterator;
- typedef struct WalCkptInfo WalCkptInfo;
- /*
- ** The following object holds a copy of the wal-index header content.
- **
- ** The actual header in the wal-index consists of two copies of this
- ** object.
- **
- ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
- ** Or it can be 1 to represent a 65536-byte page. The latter case was
- ** added in 3.7.1 when support for 64K pages was added.
- */
- struct WalIndexHdr {
- u32 iVersion; /* Wal-index version */
- u32 unused; /* Unused (padding) field */
- u32 iChange; /* Counter incremented each transaction */
- u8 isInit; /* 1 when initialized */
- u8 bigEndCksum; /* True if checksums in WAL are big-endian */
- u16 szPage; /* Database page size in bytes. 1==64K */
- u32 mxFrame; /* Index of last valid frame in the WAL */
- u32 nPage; /* Size of database in pages */
- u32 aFrameCksum[2]; /* Checksum of last frame in log */
- u32 aSalt[2]; /* Two salt values copied from WAL header */
- u32 aCksum[2]; /* Checksum over all prior fields */
- };
- /*
- ** A copy of the following object occurs in the wal-index immediately
- ** following the second copy of the WalIndexHdr. This object stores
- ** information used by checkpoint.
- **
- ** nBackfill is the number of frames in the WAL that have been written
- ** back into the database. (We call the act of moving content from WAL to
- ** database "backfilling".) The nBackfill number is never greater than
- ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
- ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
- ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
- ** mxFrame back to zero when the WAL is reset.
- **
- ** There is one entry in aReadMark[] for each reader lock. If a reader
- ** holds read-lock K, then the value in aReadMark[K] is no greater than
- ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
- ** for any aReadMark[] means that entry is unused. aReadMark[0] is
- ** a special case; its value is never used and it exists as a place-holder
- ** to avoid having to offset aReadMark[] indexs by one. Readers holding
- ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
- ** directly from the database.
- **
- ** The value of aReadMark[K] may only be changed by a thread that
- ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
- ** aReadMark[K] cannot changed while there is a reader is using that mark
- ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
- **
- ** The checkpointer may only transfer frames from WAL to database where
- ** the frame numbers are less than or equal to every aReadMark[] that is
- ** in use (that is, every aReadMark[j] for which there is a corresponding
- ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
- ** largest value and will increase an unused aReadMark[] to mxFrame if there
- ** is not already an aReadMark[] equal to mxFrame. The exception to the
- ** previous sentence is when nBackfill equals mxFrame (meaning that everything
- ** in the WAL has been backfilled into the database) then new readers
- ** will choose aReadMark[0] which has value 0 and hence such reader will
- ** get all their all content directly from the database file and ignore
- ** the WAL.
- **
- ** Writers normally append new frames to the end of the WAL. However,
- ** if nBackfill equals mxFrame (meaning that all WAL content has been
- ** written back into the database) and if no readers are using the WAL
- ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
- ** the writer will first "reset" the WAL back to the beginning and start
- ** writing new content beginning at frame 1.
- **
- ** We assume that 32-bit loads are atomic and so no locks are needed in
- ** order to read from any aReadMark[] entries.
- */
- struct WalCkptInfo {
- u32 nBackfill; /* Number of WAL frames backfilled into DB */
- u32 aReadMark[WAL_NREADER]; /* Reader marks */
- };
- #define READMARK_NOT_USED 0xffffffff
- /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
- ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
- ** only support mandatory file-locks, we do not read or write data
- ** from the region of the file on which locks are applied.
- */
- #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
- #define WALINDEX_LOCK_RESERVED 16
- #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
- /* Size of header before each frame in wal */
- #define WAL_FRAME_HDRSIZE 24
- /* Size of write ahead log header, including checksum. */
- /* #define WAL_HDRSIZE 24 */
- #define WAL_HDRSIZE 32
- /* WAL magic value. Either this value, or the same value with the least
- ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
- ** big-endian format in the first 4 bytes of a WAL file.
- **
- ** If the LSB is set, then the checksums for each frame within the WAL
- ** file are calculated by treating all data as an array of 32-bit
- ** big-endian words. Otherwise, they are calculated by interpreting
- ** all data as 32-bit little-endian words.
- */
- #define WAL_MAGIC 0x377f0682
- /*
- ** Return the offset of frame iFrame in the write-ahead log file,
- ** assuming a database page size of szPage bytes. The offset returned
- ** is to the start of the write-ahead log frame-header.
- */
- #define walFrameOffset(iFrame, szPage) ( \
- WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
- )
- /*
- ** An open write-ahead log file is represented by an instance of the
- ** following object.
- */
- struct Wal {
- sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
- sqlite3_file *pDbFd; /* File handle for the database file */
- sqlite3_file *pWalFd; /* File handle for WAL file */
- u32 iCallback; /* Value to pass to log callback (or 0) */
- i64 mxWalSize; /* Truncate WAL to this size upon reset */
- int nWiData; /* Size of array apWiData */
- int szFirstBlock; /* Size of first block written to WAL file */
- volatile u32 **apWiData; /* Pointer to wal-index content in memory */
- u32 szPage; /* Database page size */
- i16 readLock; /* Which read lock is being held. -1 for none */
- u8 syncFlags; /* Flags to use to sync header writes */
- u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
- u8 writeLock; /* True if in a write transaction */
- u8 ckptLock; /* True if holding a checkpoint lock */
- u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
- u8 truncateOnCommit; /* True to truncate WAL file on commit */
- u8 syncHeader; /* Fsync the WAL header if true */
- u8 padToSectorBoundary; /* Pad transactions out to the next sector */
- WalIndexHdr hdr; /* Wal-index header for current transaction */
- const char *zWalName; /* Name of WAL file */
- u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
- #ifdef SQLITE_DEBUG
- u8 lockError; /* True if a locking error has occurred */
- #endif
- };
- /*
- ** Candidate values for Wal.exclusiveMode.
- */
- #define WAL_NORMAL_MODE 0
- #define WAL_EXCLUSIVE_MODE 1
- #define WAL_HEAPMEMORY_MODE 2
- /*
- ** Possible values for WAL.readOnly
- */
- #define WAL_RDWR 0 /* Normal read/write connection */
- #define WAL_RDONLY 1 /* The WAL file is readonly */
- #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
- /*
- ** Each page of the wal-index mapping contains a hash-table made up of
- ** an array of HASHTABLE_NSLOT elements of the following type.
- */
- typedef u16 ht_slot;
- /*
- ** This structure is used to implement an iterator that loops through
- ** all frames in the WAL in database page order. Where two or more frames
- ** correspond to the same database page, the iterator visits only the
- ** frame most recently written to the WAL (in other words, the frame with
- ** the largest index).
- **
- ** The internals of this structure are only accessed by:
- **
- ** walIteratorInit() - Create a new iterator,
- ** walIteratorNext() - Step an iterator,
- ** walIteratorFree() - Free an iterator.
- **
- ** This functionality is used by the checkpoint code (see walCheckpoint()).
- */
- struct WalIterator {
- int iPrior; /* Last result returned from the iterator */
- int nSegment; /* Number of entries in aSegment[] */
- struct WalSegment {
- int iNext; /* Next slot in aIndex[] not yet returned */
- ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
- u32 *aPgno; /* Array of page numbers. */
- int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
- int iZero; /* Frame number associated with aPgno[0] */
- } aSegment[1]; /* One for every 32KB page in the wal-index */
- };
- /*
- ** Define the parameters of the hash tables in the wal-index file. There
- ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
- ** wal-index.
- **
- ** Changing any of these constants will alter the wal-index format and
- ** create incompatibilities.
- */
- #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
- #define HASHTABLE_HASH_1 383 /* Should be prime */
- #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
- /*
- ** The block of page numbers associated with the first hash-table in a
- ** wal-index is smaller than usual. This is so that there is a complete
- ** hash-table on each aligned 32KB page of the wal-index.
- */
- #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
- /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
- #define WALINDEX_PGSZ ( \
- sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
- )
- /*
- ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
- ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
- ** numbered from zero.
- **
- ** If this call is successful, *ppPage is set to point to the wal-index
- ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
- ** then an SQLite error code is returned and *ppPage is set to 0.
- */
- static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
- int rc = SQLITE_OK;
- /* Enlarge the pWal->apWiData[] array if required */
- if( pWal->nWiData<=iPage ){
- int nByte = sizeof(u32*)*(iPage+1);
- volatile u32 **apNew;
- apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
- if( !apNew ){
- *ppPage = 0;
- return SQLITE_NOMEM;
- }
- memset((void*)&apNew[pWal->nWiData], 0,
- sizeof(u32*)*(iPage+1-pWal->nWiData));
- pWal->apWiData = apNew;
- pWal->nWiData = iPage+1;
- }
- /* Request a pointer to the required page from the VFS */
- if( pWal->apWiData[iPage]==0 ){
- if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
- pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
- if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
- pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
- );
- if( rc==SQLITE_READONLY ){
- pWal->readOnly |= WAL_SHM_RDONLY;
- rc = SQLITE_OK;
- }
- }
- }
- *ppPage = pWal->apWiData[iPage];
- assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
- return rc;
- }
- /*
- ** Return a pointer to the WalCkptInfo structure in the wal-index.
- */
- static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
- assert( pWal->nWiData>0 && pWal->apWiData[0] );
- return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
- }
- /*
- ** Return a pointer to the WalIndexHdr structure in the wal-index.
- */
- static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
- assert( pWal->nWiData>0 && pWal->apWiData[0] );
- return (volatile WalIndexHdr*)pWal->apWiData[0];
- }
- /*
- ** The argument to this macro must be of type u32. On a little-endian
- ** architecture, it returns the u32 value that results from interpreting
- ** the 4 bytes as a big-endian value. On a big-endian architecture, it
- ** returns the value that would be produced by intepreting the 4 bytes
- ** of the input value as a little-endian integer.
- */
- #define BYTESWAP32(x) ( \
- (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
- + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
- )
- /*
- ** Generate or extend an 8 byte checksum based on the data in
- ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
- ** initial values of 0 and 0 if aIn==NULL).
- **
- ** The checksum is written back into aOut[] before returning.
- **
- ** nByte must be a positive multiple of 8.
- */
- static void walChecksumBytes(
- int nativeCksum, /* True for native byte-order, false for non-native */
- u8 *a, /* Content to be checksummed */
- int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
- const u32 *aIn, /* Initial checksum value input */
- u32 *aOut /* OUT: Final checksum value output */
- ){
- u32 s1, s2;
- u32 *aData = (u32 *)a;
- u32 *aEnd = (u32 *)&a[nByte];
- if( aIn ){
- s1 = aIn[0];
- s2 = aIn[1];
- }else{
- s1 = s2 = 0;
- }
- assert( nByte>=8 );
- assert( (nByte&0x00000007)==0 );
- if( nativeCksum ){
- do {
- s1 += *aData++ + s2;
- s2 += *aData++ + s1;
- }while( aData<aEnd );
- }else{
- do {
- s1 += BYTESWAP32(aData[0]) + s2;
- s2 += BYTESWAP32(aData[1]) + s1;
- aData += 2;
- }while( aData<aEnd );
- }
- aOut[0] = s1;
- aOut[1] = s2;
- }
- static void walShmBarrier(Wal *pWal){
- if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
- sqlite3OsShmBarrier(pWal->pDbFd);
- }
- }
- /*
- ** Write the header information in pWal->hdr into the wal-index.
- **
- ** The checksum on pWal->hdr is updated before it is written.
- */
- static void walIndexWriteHdr(Wal *pWal){
- volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
- const int nCksum = offsetof(WalIndexHdr, aCksum);
- assert( pWal->writeLock );
- pWal->hdr.isInit = 1;
- pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
- walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
- memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
- walShmBarrier(pWal);
- memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
- }
- /*
- ** This function encodes a single frame header and writes it to a buffer
- ** supplied by the caller. A frame-header is made up of a series of
- ** 4-byte big-endian integers, as follows:
- **
- ** 0: Page number.
- ** 4: For commit records, the size of the database image in pages
- ** after the commit. For all other records, zero.
- ** 8: Salt-1 (copied from the wal-header)
- ** 12: Salt-2 (copied from the wal-header)
- ** 16: Checksum-1.
- ** 20: Checksum-2.
- */
- static void walEncodeFrame(
- Wal *pWal, /* The write-ahead log */
- u32 iPage, /* Database page number for frame */
- u32 nTruncate, /* New db size (or 0 for non-commit frames) */
- u8 *aData, /* Pointer to page data */
- u8 *aFrame /* OUT: Write encoded frame here */
- ){
- int nativeCksum; /* True for native byte-order checksums */
- u32 *aCksum = pWal->hdr.aFrameCksum;
- assert( WAL_FRAME_HDRSIZE==24 );
- sqlite3Put4byte(&aFrame[0], iPage);
- sqlite3Put4byte(&aFrame[4], nTruncate);
- memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
- nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
- walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
- walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
- sqlite3Put4byte(&aFrame[16], aCksum[0]);
- sqlite3Put4byte(&aFrame[20], aCksum[1]);
- }
- /*
- ** Check to see if the frame with header in aFrame[] and content
- ** in aData[] is valid. If it is a valid frame, fill *piPage and
- ** *pnTruncate and return true. Return if the frame is not valid.
- */
- static int walDecodeFrame(
- Wal *pWal, /* The write-ahead log */
- u32 *piPage, /* OUT: Database page number for frame */
- u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
- u8 *aData, /* Pointer to page data (for checksum) */
- u8 *aFrame /* Frame data */
- ){
- int nativeCksum; /* True for native byte-order checksums */
- u32 *aCksum = pWal->hdr.aFrameCksum;
- u32 pgno; /* Page number of the frame */
- assert( WAL_FRAME_HDRSIZE==24 );
- /* A frame is only valid if the salt values in the frame-header
- ** match the salt values in the wal-header.
- */
- if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
- return 0;
- }
- /* A frame is only valid if the page number is creater than zero.
- */
- pgno = sqlite3Get4byte(&aFrame[0]);
- if( pgno==0 ){
- return 0;
- }
- /* A frame is only valid if a checksum of the WAL header,
- ** all prior frams, the first 16 bytes of this frame-header,
- ** and the frame-data matches the checksum in the last 8
- ** bytes of this frame-header.
- */
- nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
- walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
- walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
- if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
- || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
- ){
- /* Checksum failed. */
- return 0;
- }
- /* If we reach this point, the frame is valid. Return the page number
- ** and the new database size.
- */
- *piPage = pgno;
- *pnTruncate = sqlite3Get4byte(&aFrame[4]);
- return 1;
- }
- #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
- /*
- ** Names of locks. This routine is used to provide debugging output and is not
- ** a part of an ordinary build.
- */
- static const char *walLockName(int lockIdx){
- if( lockIdx==WAL_WRITE_LOCK ){
- return "WRITE-LOCK";
- }else if( lockIdx==WAL_CKPT_LOCK ){
- return "CKPT-LOCK";
- }else if( lockIdx==WAL_RECOVER_LOCK ){
- return "RECOVER-LOCK";
- }else{
- static char zName[15];
- sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
- lockIdx-WAL_READ_LOCK(0));
- return zName;
- }
- }
- #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
-
- /*
- ** Set or release locks on the WAL. Locks are either shared or exclusive.
- ** A lock cannot be moved directly between shared and exclusive - it must go
- ** through the unlocked state first.
- **
- ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
- */
- static int walLockShared(Wal *pWal, int lockIdx){
- int rc;
- if( pWal->exclusiveMode ) return SQLITE_OK;
- rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
- SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
- WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
- walLockName(lockIdx), rc ? "failed" : "ok"));
- VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
- return rc;
- }
- static void walUnlockShared(Wal *pWal, int lockIdx){
- if( pWal->exclusiveMode ) return;
- (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
- SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
- WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
- }
- static int walLockExclusive(Wal *pWal, int lockIdx, int n){
- int rc;
- if( pWal->exclusiveMode ) return SQLITE_OK;
- rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
- SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
- WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
- walLockName(lockIdx), n, rc ? "failed" : "ok"));
- VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
- return rc;
- }
- static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
- if( pWal->exclusiveMode ) return;
- (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
- SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
- WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
- walLockName(lockIdx), n));
- }
- /*
- ** Compute a hash on a page number. The resulting hash value must land
- ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
- ** the hash to the next value in the event of a collision.
- */
- static int walHash(u32 iPage){
- assert( iPage>0 );
- assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
- return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
- }
- static int walNextHash(int iPriorHash){
- return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
- }
- /*
- ** Return pointers to the hash table and page number array stored on
- ** page iHash of the wal-index. The wal-index is broken into 32KB pages
- ** numbered starting from 0.
- **
- ** Set output variable *paHash to point to the start of the hash table
- ** in the wal-index file. Set *piZero to one less than the frame
- ** number of the first frame indexed by this hash table. If a
- ** slot in the hash table is set to N, it refers to frame number
- ** (*piZero+N) in the log.
- **
- ** Finally, set *paPgno so that *paPgno[1] is the page number of the
- ** first frame indexed by the hash table, frame (*piZero+1).
- */
- static int walHashGet(
- Wal *pWal, /* WAL handle */
- int iHash, /* Find the iHash'th table */
- volatile ht_slot **paHash, /* OUT: Pointer to hash index */
- volatile u32 **paPgno, /* OUT: Pointer to page number array */
- u32 *piZero /* OUT: Frame associated with *paPgno[0] */
- ){
- int rc; /* Return code */
- volatile u32 *aPgno;
- rc = walIndexPage(pWal, iHash, &aPgno);
- assert( rc==SQLITE_OK || iHash>0 );
- if( rc==SQLITE_OK ){
- u32 iZero;
- volatile ht_slot *aHash;
- aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
- if( iHash==0 ){
- aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
- iZero = 0;
- }else{
- iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
- }
-
- *paPgno = &aPgno[-1];
- *paHash = aHash;
- *piZero = iZero;
- }
- return rc;
- }
- /*
- ** Return the number of the wal-index page that contains the hash-table
- ** and page-number array that contain entries corresponding to WAL frame
- ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
- ** are numbered starting from 0.
- */
- static int walFramePage(u32 iFrame){
- int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
- assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
- && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
- && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
- && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
- && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
- );
- return iHash;
- }
- /*
- ** Return the page number associated with frame iFrame in this WAL.
- */
- static u32 walFramePgno(Wal *pWal, u32 iFrame){
- int iHash = walFramePage(iFrame);
- if( iHash==0 ){
- return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
- }
- return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
- }
- /*
- ** Remove entries from the hash table that point to WAL slots greater
- ** than pWal->hdr.mxFrame.
- **
- ** This function is called whenever pWal->hdr.mxFrame is decreased due
- ** to a rollback or savepoint.
- **
- ** At most only the hash table containing pWal->hdr.mxFrame needs to be
- ** updated. Any later hash tables will be automatically cleared when
- ** pWal->hdr.mxFrame advances to the point where those hash tables are
- ** actually needed.
- */
- static void walCleanupHash(Wal *pWal){
- volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
- volatile u32 *aPgno = 0; /* Page number array for hash table */
- u32 iZero = 0; /* frame == (aHash[x]+iZero) */
- int iLimit = 0; /* Zero values greater than this */
- int nByte; /* Number of bytes to zero in aPgno[] */
- int i; /* Used to iterate through aHash[] */
- assert( pWal->writeLock );
- testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
- testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
- testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
- if( pWal->hdr.mxFrame==0 ) return;
- /* Obtain pointers to the hash-table and page-number array containing
- ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
- ** that the page said hash-table and array reside on is already mapped.
- */
- assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
- assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
- walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
- /* Zero all hash-table entries that correspond to frame numbers greater
- ** than pWal->hdr.mxFrame.
- */
- iLimit = pWal->hdr.mxFrame - iZero;
- assert( iLimit>0 );
- for(i=0; i<HASHTABLE_NSLOT; i++){
- if( aHash[i]>iLimit ){
- aHash[i] = 0;
- }
- }
-
- /* Zero the entries in the aPgno array that correspond to frames with
- ** frame numbers greater than pWal->hdr.mxFrame.
- */
- nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
- memset((void *)&aPgno[iLimit+1], 0, nByte);
- #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
- /* Verify that the every entry in the mapping region is still reachable
- ** via the hash table even after the cleanup.
- */
- if( iLimit ){
- int i; /* Loop counter */
- int iKey; /* Hash key */
- for(i=1; i<=iLimit; i++){
- for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
- if( aHash[iKey]==i ) break;
- }
- assert( aHash[iKey]==i );
- }
- }
- #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
- }
- /*
- ** Set an entry in the wal-index that will map database page number
- ** pPage into WAL frame iFrame.
- */
- static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
- int rc; /* Return code */
- u32 iZero = 0; /* One less than frame number of aPgno[1] */
- volatile u32 *aPgno = 0; /* Page number array */
- volatile ht_slot *aHash = 0; /* Hash table */
- rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
- /* Assuming the wal-index file was successfully mapped, populate the
- ** page number array and hash table entry.
- */
- if( rc==SQLITE_OK ){
- int iKey; /* Hash table key */
- int idx; /* Value to write to hash-table slot */
- int nCollide; /* Number of hash collisions */
- idx = iFrame - iZero;
- assert( idx <= HASHTABLE_NSLOT/2 + 1 );
-
- /* If this is the first entry to be added to this hash-table, zero the
- ** entire hash table and aPgno[] array before proceding.
- */
- if( idx==1 ){
- int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
- memset((void*)&aPgno[1], 0, nByte);
- }
- /* If the entry in aPgno[] is already set, then the previous writer
- ** must have exited unexpectedly in the middle of a transaction (after
- ** writing one or more dirty pages to the WAL to free up memory).
- ** Remove the remnants of that writers uncommitted transaction from
- ** the hash-table before writing any new entries.
- */
- if( aPgno[idx] ){
- walCleanupHash(pWal);
- assert( !aPgno[idx] );
- }
- /* Write the aPgno[] array entry and the hash-table slot. */
- nCollide = idx;
- for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
- if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
- }
- aPgno[idx] = iPage;
- aHash[iKey] = (ht_slot)idx;
- #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
- /* Verify that the number of entries in the hash table exactly equals
- ** the number of entries in the mapping region.
- */
- {
- int i; /* Loop counter */
- int nEntry = 0; /* Number of entries in the hash table */
- for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
- assert( nEntry==idx );
- }
- /* Verify that the every entry in the mapping region is reachable
- ** via the hash table. This turns out to be a really, really expensive
- ** thing to check, so only do this occasionally - not on every
- ** iteration.
- */
- if( (idx&0x3ff)==0 ){
- int i; /* Loop counter */
- for(i=1; i<=idx; i++){
- for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
- if( aHash[iKey]==i ) break;
- }
- assert( aHash[iKey]==i );
- }
- }
- #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
- }
- return rc;
- }
- /*
- ** Recover the wal-index by reading the write-ahead log file.
- **
- ** This routine first tries to establish an exclusive lock on the
- ** wal-index to prevent other threads/processes from doing anything
- ** with the WAL or wal-index while recovery is running. The
- ** WAL_RECOVER_LOCK is also held so that other threads will know
- ** that this thread is running recovery. If unable to establish
- ** the necessary locks, this routine returns SQLITE_BUSY.
- */
- static int walIndexRecover(Wal *pWal){
- int rc; /* Return Code */
- i64 nSize; /* Size of log file */
- u32 aFrameCksum[2] = {0, 0};
- int iLock; /* Lock offset to lock for checkpoint */
- int nLock; /* Number of locks to hold */
- /* Obtain an exclusive lock on all byte in the locking range not already
- ** locked by the caller. The caller is guaranteed to have locked the
- ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
- ** If successful, the same bytes that are locked here are unlocked before
- ** this function returns.
- */
- assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
- assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
- assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
- assert( pWal->writeLock );
- iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
- nLock = SQLITE_SHM_NLOCK - iLock;
- rc = walLockExclusive(pWal, iLock, nLock);
- if( rc ){
- return rc;
- }
- WALTRACE(("WAL%p: recovery begin...\n", pWal));
- memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
- rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
- if( rc!=SQLITE_OK ){
- goto recovery_error;
- }
- if( nSize>WAL_HDRSIZE ){
- u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
- u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
- int szFrame; /* Number of bytes in buffer aFrame[] */
- u8 *aData; /* Pointer to data part of aFrame buffer */
- int iFrame; /* Index of last frame read */
- i64 iOffset; /* Next offset to read from log file */
- int szPage; /* Page size according to the log */
- u32 magic; /* Magic value read from WAL header */
- u32 version; /* Magic value read from WAL header */
- int isValid; /* True if this frame is valid */
- /* Read in the WAL header. */
- rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
- if( rc!=SQLITE_OK ){
- goto recovery_error;
- }
- /* If the database page size is not a power of two, or is greater than
- ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
- ** data. Similarly, if the 'magic' value is invalid, ignore the whole
- ** WAL file.
- */
- magic = sqlite3Get4byte(&aBuf[0]);
- szPage = sqlite3Get4byte(&aBuf[8]);
- if( (magic&0xFFFFFFFE)!=WAL_MAGIC
- || szPage&(szPage-1)
- || szPage>SQLITE_MAX_PAGE_SIZE
- || szPage<512
- ){
- goto finished;
- }
- pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
- pWal->szPage = szPage;
- pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
- memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
- /* Verify that the WAL header checksum is correct */
- walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
- aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
- );
- if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
- || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
- ){
- goto finished;
- }
- /* Verify that the version number on the WAL format is one that
- ** are able to understand */
- version = sqlite3Get4byte(&aBuf[4]);
- if( version!=WAL_MAX_VERSION ){
- rc = SQLITE_CANTOPEN_BKPT;
- goto finished;
- }
- /* Malloc a buffer to read frames into. */
- szFrame = szPage + WAL_FRAME_HDRSIZE;
- aFrame = (u8 *)sqlite3_malloc(szFrame);
- if( !aFrame ){
- rc = SQLITE_NOMEM;
- goto recovery_error;
- }
- aData = &aFrame[WAL_FRAME_HDRSIZE];
- /* Read all frames from the log file. */
- iFrame = 0;
- for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
- u32 pgno; /* Database page number for frame */
- u32 nTruncate; /* dbsize field from frame header */
- /* Read and decode the next log frame. */
- iFrame++;
- rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
- if( rc!=SQLITE_OK ) break;
- isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
- if( !isValid ) break;
- rc = walIndexAppend(pWal, iFrame, pgno);
- if( rc!=SQLITE_OK ) break;
- /* If nTruncate is non-zero, this is a commit record. */
- if( nTruncate ){
- pWal->hdr.mxFrame = iFrame;
- pWal->hdr.nPage = nTruncate;
- pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
- testcase( szPage<=32768 );
- testcase( szPage>=65536 );
- aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
- aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
- }
- }
- sqlite3_free(aFrame);
- }
- finished:
- if( rc==SQLITE_OK ){
- volatile WalCkptInfo *pInfo;
- int i;
- pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
- pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
- walIndexWriteHdr(pWal);
- /* Reset the checkpoint-header. This is safe because this thread is
- ** currently holding locks that exclude all other readers, writers and
- ** checkpointers.
- */
- pInfo = walCkptInfo(pWal);
- pInfo->nBackfill = 0;
- pInfo->aReadMark[0] = 0;
- for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
- if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
- /* If more than one frame was recovered from the log file, report an
- ** event via sqlite3_log(). This is to help with identifying performance
- ** problems caused by applications routinely shutting down without
- ** checkpointing the log file.
- */
- if( pWal->hdr.nPage ){
- sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
- "recovered %d frames from WAL file %s",
- pWal->hdr.mxFrame, pWal->zWalName
- );
- }
- }
- recovery_error:
- WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
- walUnlockExclusive(pWal, iLock, nLock);
- return rc;
- }
- /*
- ** Close an open wal-index.
- */
- static void walIndexClose(Wal *pWal, int isDelete){
- if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
- int i;
- for(i=0; i<pWal->nWiData; i++){
- sqlite3_free((void *)pWal->apWiData[i]);
- pWal->apWiData[i] = 0;
- }
- }else{
- sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
- }
- }
- /*
- ** Open a connection to the WAL file zWalName. The database file must
- ** already be opened on connection pDbFd. The buffer that zWalName points
- ** to must remain valid for the lifetime of the returned Wal* handle.
- **
- ** A SHARED lock should be held on the database file when this function
- ** is called. The purpose of this SHARED lock is to prevent any other
- ** client from unlinking the WAL or wal-index file. If another process
- ** were to do this just after this client opened one of these files, the
- ** system would be badly broken.
- **
- ** If the log file is successfully opened, SQLITE_OK is returned and
- ** *ppWal is set to point to a new WAL handle. If an error occurs,
- ** an SQLite error code is returned and *ppWal is left unmodified.
- */
- int sqlite3WalOpen(
- sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
- sqlite3_file *pDbFd, /* The open database file */
- const char *zWalName, /* Name of the WAL file */
- int bNoShm, /* True to run in heap-memory mode */
- i64 mxWalSize, /* Truncate WAL to this size on reset */
- Wal **ppWal /* OUT: Allocated Wal handle */
- ){
- int rc; /* Return Code */
- Wal *pRet; /* Object to allocate and return */
- int flags; /* Flags passed to OsOpen() */
- assert( zWalName && zWalName[0] );
- assert( pDbFd );
- /* In the amalgamation, the os_unix.c and os_win.c source files come before
- ** this source file. Verify that the #defines of the locking byte offsets
- ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
- */
- #ifdef WIN_SHM_BASE
- assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
- #endif
- #ifdef UNIX_SHM_BASE
- assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
- #endif
- /* Allocate an instance of struct Wal to return. */
- *ppWal = 0;
- pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
- if( !pRet ){
- return SQLITE_NOMEM;
- }
- pRet->pVfs = pVfs;
- pRet->pWalFd = (sqlite3_file *)&pRet[1];
- pRet->pDbFd = pDbFd;
- pRet->readLock = -1;
- pRet->mxWalSize = mxWalSize;
- pRet->zWalName = zWalName;
- pRet->syncHeader = 1;
- pRet->padToSectorBoundary = 1;
- pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
- /* Open file handle on the write-ahead log file. */
- flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
- rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
- if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
- pRet->readOnly = WAL_RDONLY;
- }
- if( rc!=SQLITE_OK ){
- walIndexClose(pRet, 0);
- sqlite3OsClose(pRet->pWalFd);
- sqlite3_free(pRet);
- }else{
- int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
- if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
- if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
- pRet->padToSectorBoundary = 0;
- }
- *ppWal = pRet;
- WALTRACE(("WAL%d: opened\n", pRet));
- }
- return rc;
- }
- /*
- ** Change the size to which the WAL file is trucated on each reset.
- */
- void sqlite3WalLimit(Wal *pWal, i64 iLimit){
- if( pWal ) pWal->mxWalSize = iLimit;
- }
- /*
- ** Find the smallest page number out of all pages held in the WAL that
- ** has not been returned by any prior invocation of this method on the
- ** same WalIterator object. Write into *piFrame the frame index where
- ** that page was last written into the WAL. Write into *piPage the page
- ** number.
- **
- ** Return 0 on success. If there are no pages in the WAL with a page
- ** number larger than *piPage, then return 1.
- */
- static int walIteratorNext(
- WalIterator *p, /* Iterator */
- u32 *piPage, /* OUT: The page number of the next page */
- u32 *piFrame /* OUT: Wal frame index of next page */
- ){
- u32 iMin; /* Result pgno must be greater than iMin */
- u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
- int i; /* For looping through segments */
- iMin = p->iPrior;
- assert( iMin<0xffffffff );
- for(i=p->nSegment-1; i>=0; i--){
- struct WalSegment *pSegment = &p->aSegment[i];
- while( pSegment->iNext<pSegment->nEntry ){
- u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
- if( iPg>iMin ){
- if( iPg<iRet ){
- iRet = iPg;
- *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
- }
- break;
- }
- pSegment->iNext++;
- }
- }
- *piPage = p->iPrior = iRet;
- return (iRet==0xFFFFFFFF);
- }
- /*
- ** This function merges two sorted lists into a single sorted list.
- **
- ** aLeft[] and aRight[] are arrays of indices. The sort key is
- ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
- ** is guaranteed for all J<K:
- **
- ** aContent[aLeft[J]] < aContent[aLeft[K]]
- ** aContent[aRight[J]] < aContent[aRight[K]]
- **
- ** This routine overwrites aRight[] with a new (probably longer) sequence
- ** of indices such that the aRight[] contains every index that appears in
- ** either aLeft[] or the old aRight[] and such that the second condition
- ** above is still met.
- **
- ** The aContent[aLeft[X]] values will be unique for all X. And the
- ** aContent[aRight[X]] values will be unique too. But there might be
- ** one or more combinations of X and Y such that
- **
- ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
- **
- ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
- */
- static void walMerge(
- const u32 *aContent, /* Pages in wal - keys for the sort */
- ht_slot *aLeft, /* IN: Left hand input list */
- int nLeft, /* IN: Elements in array *paLeft */
- ht_slot **paRight, /* IN/OUT: Right hand input list */
- int *pnRight, /* IN/OUT: Elements in *paRight */
- ht_slot *aTmp /* Temporary buffer */
- ){
- int iLeft = 0; /* Current index in aLeft */
- int iRight = 0; /* Current index in aRight */
- int iOut = 0; /* Current index in output buffer */
- int nRight = *pnRight;
- ht_slot *aRight = *paRight;
- assert( nLeft>0 && nRight>0 );
- while( iRight<nRight || iLeft<nLeft ){
- ht_slot logpage;
- Pgno dbpage;
- if( (iLeft<nLeft)
- && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
- ){
- logpage = aLeft[iLeft++];
- }else{
- logpage = aRight[iRight++];
- }
- dbpage = aContent[logpage];
- aTmp[iOut++] = logpage;
- if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
- assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
- assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
- }
- *paRight = aLeft;
- *pnRight = iOut;
- memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
- }
- /*
- ** Sort the elements in list aList using aContent[] as the sort key.
- ** Remove elements with duplicate keys, preferring to keep the
- ** larger aList[] values.
- **
- ** The aList[] entries are indices into aContent[]. The values in
- ** aList[] are to be sorted so that for all J<K:
- **
- ** aContent[aList[J]] < aContent[aList[K]]
- **
- ** For any X and Y such that
- **
- ** aContent[aList[X]] == aContent[aList[Y]]
- **
- ** Keep the larger of the two values aList[X] and aList[Y] and discard
- ** the smaller.
- */
- static void walMergesort(
- const u32 *aContent, /* Pages in wal */
- ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
- ht_slot *aList, /* IN/OUT: List to sort */
- int *pnList /* IN/OUT: Number of elements in aList[] */
- ){
- struct Sublist {
- int nList; /* Number of elements in aList */
- ht_slot *aList; /* Pointer to sub-list content */
- };
- const int nList = *pnList; /* Size of input list */
- int nMerge = 0; /* Number of elements in list aMerge */
- ht_slot *aMerge = 0; /* List to be merged */
- int iList; /* Index into input list */
- int iSub = 0; /* Index into aSub array */
- struct Sublist aSub[13]; /* Array of sub-lists */
- memset(aSub, 0, sizeof(aSub));
- assert( nList<=HASHTABLE_NPAGE && nList>0 );
- assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
- for(iList=0; iList<nList; iList++){
- nMerge = 1;
- aMerge = &aList[iList];
- for(iSub=0; iList & (1<<iSub); iSub++){
- struct Sublist *p = &aSub[iSub];
- assert( p->aList && p->nList<=(1<<iSub) );
- assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
- walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
- }
- aSub[iSub].aList = aMerge;
- aSub[iSub].nList = nMerge;
- }
- for(iSub++; iSub<ArraySize(aSub); iSub++){
- if( nList & (1<<iSub) ){
- struct Sublist *p = &aSub[iSub];
- assert( p->nList<=(1<<iSub) );
- assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
- walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
- }
- }
- assert( aMerge==aList );
- *pnList = nMerge;
- #ifdef SQLITE_DEBUG
- {
- int i;
- for(i=1; i<*pnList; i++){
- assert( aContent[aList[i]] > aContent[aList[i-1]] );
- }
- }
- #endif
- }
- /*
- ** Free an iterator allocated by walIteratorInit().
- */
- static void walIteratorFree(WalIterator *p){
- sqlite3ScratchFree(p);
- }
- /*
- ** Construct a WalInterator object that can be used to loop over all
- ** pages in the WAL in ascending order. The caller must hold the checkpoint
- ** lock.
- **
- ** On success, make *pp point to the newly allocated WalInterator object
- ** return SQLITE_OK. Otherwise, return an error code. If this routine
- ** returns an error, the value of *pp is undefined.
- **
- ** The calling routine should invoke walIteratorFree() to destroy the
- ** WalIterator object when it has finished with it.
- */
- static int walIteratorInit(Wal *pWal, WalIterator **pp){
- WalIterator *p; /* Return value */
- int nSegment; /* Number of segments to merge */
- u32 iLast; /* Last frame in log */
- int nByte; /* Number of bytes to allocate */
- int i; /* Iterator variable */
- ht_slot *aTmp; /* Temp space used by merge-sort */
- int rc = SQLITE_OK; /* Return Code */
- /* This routine only runs while holding the checkpoint lock. And
- ** it only runs if there is actually content in the log (mxFrame>0).
- */
- assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
- iLast = pWal->hdr.mxFrame;
- /* Allocate space for the WalIterator object. */
- nSegment = walFramePage(iLast) + 1;
- nByte = sizeof(WalIterator)
- + (nSegment-1)*sizeof(struct WalSegment)
- + iLast*sizeof(ht_slot);
- p = (WalIterator *)sqlite3ScratchMalloc(nByte);
- if( !p ){
- return SQLITE_NOMEM;
- }
- memset(p, 0, nByte);
- p->nSegment = nSegment;
- /* Allocate temporary space used by the merge-sort routine. This block
- ** of memory will be freed before this function returns.
- */
- aTmp = (ht_slot *)sqlite3ScratchMalloc(
- sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
- );
- if( !aTmp ){
- rc = SQLITE_NOMEM;
- }
- for(i=0; rc==SQLITE_OK && i<nSegment; i++){
- volatile ht_slot *aHash;
- u32 iZero;
- volatile u32 *aPgno;
- rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
- if( rc==SQLITE_OK ){
- int j; /* Counter variable */
- int nEntry; /* Number of entries in this segment */
- ht_slot *aIndex; /* Sorted index for this segment */
- aPgno++;
- if( (i+1)==nSegment ){
- nEntry = (int)(iLast - iZero);
- }else{
- nEntry = (int)((u32*)aHash - (u32*)aPgno);
- }
- aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
- iZero++;
-
- for(j=0; j<nEntry; j++){
- aIndex[j] = (ht_slot)j;
- }
- walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
- p->aSegment[i].iZero = iZero;
- p->aSegment[i].nEntry = nEntry;
- p->aSegment[i].aIndex = aIndex;
- p->aSegment[i].aPgno = (u32 *)aPgno;
- }
- }
- sqlite3ScratchFree(aTmp);
- if( rc!=SQLITE_OK ){
- walIteratorFree(p);
- }
- *pp = p;
- return rc;
- }
- /*
- ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
- ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
- ** busy-handler function. Invoke it and retry the lock until either the
- ** lock is successfully obtained or the busy-handler returns 0.
- */
- static int walBusyLock(
- Wal *pWal, /* WAL connection */
- int (*xBusy)(void*), /* Function to call when busy */
- void *pBusyArg, /* Context argument for xBusyHandler */
- int lockIdx, /* Offset of first byte to lock */
- int n /* Number of bytes to lock */
- ){
- int rc;
- do {
- rc = walLockExclusive(pWal, lockIdx, n);
- }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
- return rc;
- }
- /*
- ** The cache of the wal-index header must be valid to call this function.
- ** Return the page-size in bytes used by the database.
- */
- static int walPagesize(Wal *pWal){
- return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
- }
- /*
- ** Copy as much content as we can from the WAL back into the database file
- ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
- **
- ** The amount of information copies from WAL to database might be limited
- ** by active readers. This routine will never overwrite a database page
- ** that a concurrent reader might be using.
- **
- ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
- ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
- ** checkpoints are always run by a background thread or background
- ** process, foreground threads will never block on a lengthy fsync call.
- **
- ** Fsync is called on the WAL before writing content out of the WAL and
- ** into the database. This ensures that if the new content is persistent
- ** in the WAL and can be recovered following a power-loss or hard reset.
- **
- ** Fsync is also called on the database file if (and only if) the entire
- ** WAL content is copied into the database file. This second fsync makes
- ** it safe to delete the WAL since the new content will persist in the
- ** database file.
- **
- ** This routine uses and updates the nBackfill field of the wal-index header.
- ** This is the only routine tha will increase the value of nBackfill.
- ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
- ** its value.)
- **
- ** The caller must be holding sufficient locks to ensure that no other
- ** checkpoint is running (in any other thread or process) at the same
- ** time.
- */
- static int walCheckpoint(
- Wal *pWal, /* Wal connection */
- int eMode, /* One of PASSIVE, FULL or RESTART */
- int (*xBusyCall)(void*), /* Function to call when busy */
- void *pBusyArg, /* Context argument for xBusyHandler */
- int sync_flags, /* Flags for OsSync() (or 0) */
- u8 *zBuf /* Temporary buffer to use */
- ){
- int rc; /* Return code */
- int szPage; /* Database page-size */
- WalIterator *pIter = 0; /* Wal iterator context */
- u32 iDbpage = 0; /* Next database page to write */
- u32 iFrame = 0; /* Wal frame containing data for iDbpage */
- u32 mxSafeFrame; /* Max frame that can be backfilled */
- u32 mxPage; /* Max database page to write */
- int i; /* Loop counter */
- volatile WalCkptInfo *pInfo; /* The checkpoint status information */
- int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
- szPage = walPagesize(pWal);
- testcase( szPage<=32768 );
- testcase( szPage>=65536 );
- pInfo = walCkptInfo(pWal);
- if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
- /* Allocate the iterator */
- rc = walIteratorInit(pWal, &pIter);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( pIter );
- if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
- /* Compute in mxSafeFrame the index of the last frame of the WAL that is
- ** safe to write into the database. Frames beyond mxSafeFrame might
- ** overwrite database pages that are in use by active readers and thus
- ** cannot be backfilled from the WAL.
- */
- mxSafeFrame = pWal->hdr.mxFrame;
- mxPage = pWal->hdr.nPage;
- for(i=1; i<WAL_NREADER; i++){
- u32 y = pInfo->aReadMark[i];
- if( mxSafeFrame>y ){
- assert( y<=pWal->hdr.mxFrame );
- rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
- if( rc==SQLITE_OK ){
- pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
- walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
- }else if( rc==SQLITE_BUSY ){
- mxSafeFrame = y;
- xBusy = 0;
- }else{
- goto walcheckpoint_out;
- }
- }
- }
- if( pInfo->nBackfill<mxSafeFrame
- && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
- ){
- i64 nSize; /* Current size of database file */
- u32 nBackfill = pInfo->nBackfill;
- /* Sync the WAL to disk */
- if( sync_flags ){
- rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
- }
- /* If the database may grow as a result of this checkpoint, hint
- ** about the eventual size of the db file to the VFS layer.
- */
- if( rc==SQLITE_OK ){
- i64 nReq = ((i64)mxPage * szPage);
- rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
- if( rc==SQLITE_OK && nSize<nReq ){
- sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
- }
- }
- /* Iterate through the contents of the WAL, copying data to the db file. */
- while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
- i64 iOffset;
- assert( walFramePgno(pWal, iFrame)==iDbpage );
- if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
- iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
- /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
- rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
- if( rc!=SQLITE_OK ) break;
- iOffset = (iDbpage-1)*(i64)szPage;
- testcase( IS_BIG_INT(iOffset) );
- rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
- if( rc!=SQLITE_OK ) break;
- }
- /* If work was actually accomplished... */
- if( rc==SQLITE_OK ){
- if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
- i64 szDb = pWal->hdr.nPage*(i64)szPage;
- testcase( IS_BIG_INT(szDb) );
- rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
- if( rc==SQLITE_OK && sync_flags ){
- rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
- }
- }
- if( rc==SQLITE_OK ){
- pInfo->nBackfill = mxSafeFrame;
- }
- }
- /* Release the reader lock held while backfilling */
- walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
- }
- if( rc==SQLITE_BUSY ){
- /* Reset the return code so as not to report a checkpoint failure
- ** just because there are active readers. */
- rc = SQLITE_OK;
- }
- /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
- ** file has been copied into the database file, then block until all
- ** readers have finished using the wal file. This ensures that the next
- ** process to write to the database restarts the wal file.
- */
- if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
- assert( pWal->writeLock );
- if( pInfo->nBackfill<pWal->hdr.mxFrame ){
- rc = SQLITE_BUSY;
- }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
- assert( mxSafeFrame==pWal->hdr.mxFrame );
- rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
- if( rc==SQLITE_OK ){
- walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
- }
- }
- }
- walcheckpoint_out:
- walIteratorFree(pIter);
- return rc;
- }
- /*
- ** If the WAL file is currently larger than nMax bytes in size, truncate
- ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
- */
- static void walLimitSize(Wal *pWal, i64 nMax){
- i64 sz;
- int rx;
- sqlite3BeginBenignMalloc();
- rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
- if( rx==SQLITE_OK && (sz > nMax ) ){
- rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
- }
- sqlite3EndBenignMalloc();
- if( rx ){
- sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
- }
- }
- /*
- ** Close a connection to a log file.
- */
- int sqlite3WalClose(
- Wal *pWal, /* Wal to close */
- int sync_flags, /* Flags to pass to OsSync() (or 0) */
- int nBuf,
- u8 *zBuf /* Buffer of at least nBuf bytes */
- ){
- int rc = SQLITE_OK;
- if( pWal ){
- int isDelete = 0; /* True to unlink wal and wal-index files */
- /* If an EXCLUSIVE lock can be obtained on the database file (using the
- ** ordinary, rollback-mode locking methods, this guarantees that the
- ** connection associated with this log file is the only connection to
- ** the database. In this case checkpoint the database and unlink both
- ** the wal and wal-index files.
- **
- ** The EXCLUSIVE lock is not released before returning.
- */
- rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
- if( rc==SQLITE_OK ){
- if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
- pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
- }
- rc = sqlite3WalCheckpoint(
- pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
- );
- if( rc==SQLITE_OK ){
- int bPersist = -1;
- sqlite3OsFileControlHint(
- pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
- );
- if( bPersist!=1 ){
- /* Try to delete the WAL file if the checkpoint completed and
- ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
- ** mode (!bPersist) */
- isDelete = 1;
- }else if( pWal->mxWalSize>=0 ){
- /* Try to truncate the WAL file to zero bytes if the checkpoint
- ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
- ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
- ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
- ** to zero bytes as truncating to the journal_size_limit might
- ** leave a corrupt WAL file on disk. */
- walLimitSize(pWal, 0);
- }
- }
- }
- walIndexClose(pWal, isDelete);
- sqlite3OsClose(pWal->pWalFd);
- if( isDelete ){
- sqlite3BeginBenignMalloc();
- sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
- sqlite3EndBenignMalloc();
- }
- WALTRACE(("WAL%p: closed\n", pWal));
- sqlite3_free((void *)pWal->apWiData);
- sqlite3_free(pWal);
- }
- return rc;
- }
- /*
- ** Try to read the wal-index header. Return 0 on success and 1 if
- ** there is a problem.
- **
- ** The wal-index is in shared memory. Another thread or process might
- ** be writing the header at the same time this procedure is trying to
- ** read it, which might result in inconsistency. A dirty read is detected
- ** by verifying that both copies of the header are the same and also by
- ** a checksum on the header.
- **
- ** If and only if the read is consistent and the header is different from
- ** pWal->hdr, then pWal->hdr is updated to the content of the new header
- ** and *pChanged is set to 1.
- **
- ** If the checksum cannot be verified return non-zero. If the header
- ** is read successfully and the checksum verified, return zero.
- */
- static int walIndexTryHdr(Wal *pWal, int *pChanged){
- u32 aCksum[2]; /* Checksum on the header content */
- WalIndexHdr h1, h2; /* Two copies of the header content */
- WalIndexHdr volatile *aHdr; /* Header in shared memory */
- /* The first page of the wal-index must be mapped at this point. */
- assert( pWal->nWiData>0 && pWal->apWiData[0] );
- /* Read the header. This might happen concurrently with a write to the
- ** same area of shared memory on a different CPU in a SMP,
- ** meaning it is possible that an inconsistent snapshot is read
- ** from the file. If this happens, return non-zero.
- **
- ** There are two copies of the header at the beginning of the wal-index.
- ** When reading, read [0] first then [1]. Writes are in the reverse order.
- ** Memory barriers are used to prevent the compiler or the hardware from
- ** reordering the reads and writes.
- */
- aHdr = walIndexHdr(pWal);
- memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
- walShmBarrier(pWal);
- memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
- if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
- return 1; /* Dirty read */
- }
- if( h1.isInit==0 ){
- return 1; /* Malformed header - probably all zeros */
- }
- walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
- if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
- return 1; /* Checksum does not match */
- }
- if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
- *pChanged = 1;
- memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
- pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
- testcase( pWal->szPage<=32768 );
- testcase( pWal->szPage>=65536 );
- }
- /* The header was successfully read. Return zero. */
- return 0;
- }
- /*
- ** Read the wal-index header from the wal-index and into pWal->hdr.
- ** If the wal-header appears to be corrupt, try to reconstruct the
- ** wal-index from the WAL before returning.
- **
- ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
- ** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
- ** to 0.
- **
- ** If the wal-index header is successfully read, return SQLITE_OK.
- ** Otherwise an SQLite error code.
- */
- static int walIndexReadHdr(Wal *pWal, int *pChanged){
- int rc; /* Return code */
- int badHdr; /* True if a header read failed */
- volatile u32 *page0; /* Chunk of wal-index containing header */
- /* Ensure that page 0 of the wal-index (the page that contains the
- ** wal-index header) is mapped. Return early if an error occurs here.
- */
- assert( pChanged );
- rc = walIndexPage(pWal, 0, &page0);
- if( rc!=SQLITE_OK ){
- return rc;
- };
- assert( page0 || pWal->writeLock==0 );
- /* If the first page of the wal-index has been mapped, try to read the
- ** wal-index header immediately, without holding any lock. This usually
- ** works, but may fail if the wal-index header is corrupt or currently
- ** being modified by another thread or process.
- */
- badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
- /* If the first attempt failed, it might have been due to a race
- ** with a writer. So get a WRITE lock and try again.
- */
- assert( badHdr==0 || pWal->writeLock==0 );
- if( badHdr ){
- if( pWal->readOnly & WAL_SHM_RDONLY ){
- if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
- walUnlockShared(pWal, WAL_WRITE_LOCK);
- rc = SQLITE_READONLY_RECOVERY;
- }
- }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
- pWal->writeLock = 1;
- if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
- badHdr = walIndexTryHdr(pWal, pChanged);
- if( badHdr ){
- /* If the wal-index header is still malformed even while holding
- ** a WRITE lock, it can only mean that the header is corrupted and
- ** needs to be reconstructed. So run recovery to do exactly that.
- */
- rc = walIndexRecover(pWal);
- *pChanged = 1;
- }
- }
- pWal->writeLock = 0;
- walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
- }
- }
- /* If the header is read successfully, check the version number to make
- ** sure the wal-index was not constructed with some future format that
- ** this version of SQLite cannot understand.
- */
- if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
- rc = SQLITE_CANTOPEN_BKPT;
- }
- return rc;
- }
- /*
- ** This is the value that walTryBeginRead returns when it needs to
- ** be retried.
- */
- #define WAL_RETRY (-1)
- /*
- ** Attempt to start a read transaction. This might fail due to a race or
- ** other transient condition. When that happens, it returns WAL_RETRY to
- ** indicate to the caller that it is safe to retry immediately.
- **
- ** On success return SQLITE_OK. On a permanent failure (such an
- ** I/O error or an SQLITE_BUSY because another process is running
- ** recovery) return a positive error code.
- **
- ** The useWal parameter is true to force the use of the WAL and disable
- ** the case where the WAL is bypassed because it has been completely
- ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
- ** to make a copy of the wal-index header into pWal->hdr. If the
- ** wal-index header has changed, *pChanged is set to 1 (as an indication
- ** to the caller that the local paget cache is obsolete and needs to be
- ** flushed.) When useWal==1, the wal-index header is assumed to already
- ** be loaded and the pChanged parameter is unused.
- **
- ** The caller must set the cnt parameter to the number of prior calls to
- ** this routine during the current read attempt that returned WAL_RETRY.
- ** This routine will start taking more aggressive measures to clear the
- ** race conditions after multiple WAL_RETRY returns, and after an excessive
- ** number of errors will ultimately return SQLITE_PROTOCOL. The
- ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
- ** and is not honoring the locking protocol. There is a vanishingly small
- ** chance that SQLITE_PROTOCOL could be returned because of a run of really
- ** bad luck when there is lots of contention for the wal-index, but that
- ** possibility is so small that it can be safely neglected, we believe.
- **
- ** On success, this routine obtains a read lock on
- ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
- ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
- ** that means the Wal does not hold any read lock. The reader must not
- ** access any database page that is modified by a WAL frame up to and
- ** including frame number aReadMark[pWal->readLock]. The reader will
- ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
- ** Or if pWal->readLock==0, then the reader will ignore the WAL
- ** completely and get all content directly from the database file.
- ** If the useWal parameter is 1 then the WAL will never be ignored and
- ** this routine will always set pWal->readLock>0 on success.
- ** When the read transaction is completed, the caller must release the
- ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
- **
- ** This routine uses the nBackfill and aReadMark[] fields of the header
- ** to select a particular WAL_READ_LOCK() that strives to let the
- ** checkpoint process do as much work as possible. This routine might
- ** update values of the aReadMark[] array in the header, but if it does
- ** so it takes care to hold an exclusive lock on the corresponding
- ** WAL_READ_LOCK() while changing values.
- */
- static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
- volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
- u32 mxReadMark; /* Largest aReadMark[] value */
- int mxI; /* Index of largest aReadMark[] value */
- int i; /* Loop counter */
- int rc = SQLITE_OK; /* Return code */
- assert( pWal->readLock<0 ); /* Not currently locked */
- /* Take steps to avoid spinning forever if there is a protocol error.
- **
- ** Circumstances that cause a RETRY should only last for the briefest
- ** instances of time. No I/O or other system calls are done while the
- ** locks are held, so the locks should not be held for very long. But
- ** if we are unlucky, another process that is holding a lock might get
- ** paged out or take a page-fault that is time-consuming to resolve,
- ** during the few nanoseconds that it is holding the lock. In that case,
- ** it might take longer than normal for the lock to free.
- **
- ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
- ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
- ** is more of a scheduler yield than an actual delay. But on the 10th
- ** an subsequent retries, the delays start becoming longer and longer,
- ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
- ** The total delay time before giving up is less than 1 second.
- */
- if( cnt>5 ){
- int nDelay = 1; /* Pause time in microseconds */
- if( cnt>100 ){
- VVA_ONLY( pWal->lockError = 1; )
- return SQLITE_PROTOCOL;
- }
- if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
- sqlite3OsSleep(pWal->pVfs, nDelay);
- }
- if( !useWal ){
- rc = walIndexReadHdr(pWal, pChanged);
- if( rc==SQLITE_BUSY ){
- /* If there is not a recovery running in another thread or process
- ** then convert BUSY errors to WAL_RETRY. If recovery is known to
- ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
- ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
- ** would be technically correct. But the race is benign since with
- ** WAL_RETRY this routine will be called again and will probably be
- ** right on the second iteration.
- */
- if( pWal->apWiData[0]==0 ){
- /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
- ** We assume this is a transient condition, so return WAL_RETRY. The
- ** xShmMap() implementation used by the default unix and win32 VFS
- ** modules may return SQLITE_BUSY due to a race condition in the
- ** code that determines whether or not the shared-memory region
- ** must be zeroed before the requested page is returned.
- */
- rc = WAL_RETRY;
- }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
- walUnlockShared(pWal, WAL_RECOVER_LOCK);
- rc = WAL_RETRY;
- }else if( rc==SQLITE_BUSY ){
- rc = SQLITE_BUSY_RECOVERY;
- }
- }
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- pInfo = walCkptInfo(pWal);
- if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
- /* The WAL has been completely backfilled (or it is empty).
- ** and can be safely ignored.
- */
- rc = walLockShared(pWal, WAL_READ_LOCK(0));
- walShmBarrier(pWal);
- if( rc==SQLITE_OK ){
- if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
- /* It is not safe to allow the reader to continue here if frames
- ** may have been appended to the log before READ_LOCK(0) was obtained.
- ** When holding READ_LOCK(0), the reader ignores the entire log file,
- ** which implies that the database file contains a trustworthy
- ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
- ** happening, this is usually correct.
- **
- ** However, if frames have been appended to the log (or if the log
- ** is wrapped and written for that matter) before the READ_LOCK(0)
- ** is obtained, that is not necessarily true. A checkpointer may
- ** have started to backfill the appended frames but crashed before
- ** it finished. Leaving a corrupt image in the database file.
- */
- walUnlockShared(pWal, WAL_READ_LOCK(0));
- return WAL_RETRY;
- }
- pWal->readLock = 0;
- return SQLITE_OK;
- }else if( rc!=SQLITE_BUSY ){
- return rc;
- }
- }
- /* If we get this far, it means that the reader will want to use
- ** the WAL to get at content from recent commits. The job now is
- ** to select one of the aReadMark[] entries that is closest to
- ** but not exceeding pWal->hdr.mxFrame and lock that entry.
- */
- mxReadMark = 0;
- mxI = 0;
- for(i=1; i<WAL_NREADER; i++){
- u32 thisMark = pInfo->aReadMark[i];
- if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
- assert( thisMark!=READMARK_NOT_USED );
- mxReadMark = thisMark;
- mxI = i;
- }
- }
- /* There was once an "if" here. The extra "{" is to preserve indentation. */
- {
- if( (pWal->readOnly & WAL_SHM_RDONLY)==0
- && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
- ){
- for(i=1; i<WAL_NREADER; i++){
- rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
- if( rc==SQLITE_OK ){
- mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
- mxI = i;
- walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
- break;
- }else if( rc!=SQLITE_BUSY ){
- return rc;
- }
- }
- }
- if( mxI==0 ){
- assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
- return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
- }
- rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
- if( rc ){
- return rc==SQLITE_BUSY ? WAL_RETRY : rc;
- }
- /* Now that the read-lock has been obtained, check that neither the
- ** value in the aReadMark[] array or the contents of the wal-index
- ** header have changed.
- **
- ** It is necessary to check that the wal-index header did not change
- ** between the time it was read and when the shared-lock was obtained
- ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
- ** that the log file may have been wrapped by a writer, or that frames
- ** that occur later in the log than pWal->hdr.mxFrame may have been
- ** copied into the database by a checkpointer. If either of these things
- ** happened, then reading the database with the current value of
- ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
- ** instead.
- **
- ** This does not guarantee that the copy of the wal-index header is up to
- ** date before proceeding. That would not be possible without somehow
- ** blocking writers. It only guarantees that a dangerous checkpoint or
- ** log-wrap (either of which would require an exclusive lock on
- ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
- */
- walShmBarrier(pWal);
- if( pInfo->aReadMark[mxI]!=mxReadMark
- || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
- ){
- walUnlockShared(pWal, WAL_READ_LOCK(mxI));
- return WAL_RETRY;
- }else{
- assert( mxReadMark<=pWal->hdr.mxFrame );
- pWal->readLock = (i16)mxI;
- }
- }
- return rc;
- }
- /*
- ** Begin a read transaction on the database.
- **
- ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
- ** it takes a snapshot of the state of the WAL and wal-index for the current
- ** instant in time. The current thread will continue to use this snapshot.
- ** Other threads might append new content to the WAL and wal-index but
- ** that extra content is ignored by the current thread.
- **
- ** If the database contents have changes since the previous read
- ** transaction, then *pChanged is set to 1 before returning. The
- ** Pager layer will use this to know that is cache is stale and
- ** needs to be flushed.
- */
- int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
- int rc; /* Return code */
- int cnt = 0; /* Number of TryBeginRead attempts */
- do{
- rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
- }while( rc==WAL_RETRY );
- testcase( (rc&0xff)==SQLITE_BUSY );
- testcase( (rc&0xff)==SQLITE_IOERR );
- testcase( rc==SQLITE_PROTOCOL );
- testcase( rc==SQLITE_OK );
- return rc;
- }
- /*
- ** Finish with a read transaction. All this does is release the
- ** read-lock.
- */
- void sqlite3WalEndReadTransaction(Wal *pWal){
- sqlite3WalEndWriteTransaction(pWal);
- if( pWal->readLock>=0 ){
- walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
- pWal->readLock = -1;
- }
- }
- /*
- ** Search the wal file for page pgno. If found, set *piRead to the frame that
- ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
- ** to zero.
- **
- ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
- ** error does occur, the final value of *piRead is undefined.
- */
- int sqlite3WalFindFrame(
- Wal *pWal, /* WAL handle */
- Pgno pgno, /* Database page number to read data for */
- u32 *piRead /* OUT: Frame number (or zero) */
- ){
- u32 iRead = 0; /* If !=0, WAL frame to return data from */
- u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
- int iHash; /* Used to loop through N hash tables */
- /* This routine is only be called from within a read transaction. */
- assert( pWal->readLock>=0 || pWal->lockError );
- /* If the "last page" field of the wal-index header snapshot is 0, then
- ** no data will be read from the wal under any circumstances. Return early
- ** in this case as an optimization. Likewise, if pWal->readLock==0,
- ** then the WAL is ignored by the reader so return early, as if the
- ** WAL were empty.
- */
- if( iLast==0 || pWal->readLock==0 ){
- *piRead = 0;
- return SQLITE_OK;
- }
- /* Search the hash table or tables for an entry matching page number
- ** pgno. Each iteration of the following for() loop searches one
- ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
- **
- ** This code might run concurrently to the code in walIndexAppend()
- ** that adds entries to the wal-index (and possibly to this hash
- ** table). This means the value just read from the hash
- ** slot (aHash[iKey]) may have been added before or after the
- ** current read transaction was opened. Values added after the
- ** read transaction was opened may have been written incorrectly -
- ** i.e. these slots may contain garbage data. However, we assume
- ** that any slots written before the current read transaction was
- ** opened remain unmodified.
- **
- ** For the reasons above, the if(...) condition featured in the inner
- ** loop of the following block is more stringent that would be required
- ** if we had exclusive access to the hash-table:
- **
- ** (aPgno[iFrame]==pgno):
- ** This condition filters out normal hash-table collisions.
- **
- ** (iFrame<=iLast):
- ** This condition filters out entries that were added to the hash
- ** table after the current read-transaction had started.
- */
- for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
- volatile ht_slot *aHash; /* Pointer to hash table */
- volatile u32 *aPgno; /* Pointer to array of page numbers */
- u32 iZero; /* Frame number corresponding to aPgno[0] */
- int iKey; /* Hash slot index */
- int nCollide; /* Number of hash collisions remaining */
- int rc; /* Error code */
- rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- nCollide = HASHTABLE_NSLOT;
- for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
- u32 iFrame = aHash[iKey] + iZero;
- if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
- /* assert( iFrame>iRead ); -- not true if there is corruption */
- iRead = iFrame;
- }
- if( (nCollide--)==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- }
- }
- #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
- /* If expensive assert() statements are available, do a linear search
- ** of the wal-index file content. Make sure the results agree with the
- ** result obtained using the hash indexes above. */
- {
- u32 iRead2 = 0;
- u32 iTest;
- for(iTest=iLast; iTest>0; iTest--){
- if( walFramePgno(pWal, iTest)==pgno ){
- iRead2 = iTest;
- break;
- }
- }
- assert( iRead==iRead2 );
- }
- #endif
- *piRead = iRead;
- return SQLITE_OK;
- }
- /*
- ** Read the contents of frame iRead from the wal file into buffer pOut
- ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
- ** error code otherwise.
- */
- int sqlite3WalReadFrame(
- Wal *pWal, /* WAL handle */
- u32 iRead, /* Frame to read */
- int nOut, /* Size of buffer pOut in bytes */
- u8 *pOut /* Buffer to write page data to */
- ){
- int sz;
- i64 iOffset;
- sz = pWal->hdr.szPage;
- sz = (sz&0xfe00) + ((sz&0x0001)<<16);
- testcase( sz<=32768 );
- testcase( sz>=65536 );
- iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
- /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
- return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
- }
- /*
- ** Return the size of the database in pages (or zero, if unknown).
- */
- Pgno sqlite3WalDbsize(Wal *pWal){
- if( pWal && ALWAYS(pWal->readLock>=0) ){
- return pWal->hdr.nPage;
- }
- return 0;
- }
- /*
- ** This function starts a write transaction on the WAL.
- **
- ** A read transaction must have already been started by a prior call
- ** to sqlite3WalBeginReadTransaction().
- **
- ** If another thread or process has written into the database since
- ** the read transaction was started, then it is not possible for this
- ** thread to write as doing so would cause a fork. So this routine
- ** returns SQLITE_BUSY in that case and no write transaction is started.
- **
- ** There can only be a single writer active at a time.
- */
- int sqlite3WalBeginWriteTransaction(Wal *pWal){
- int rc;
- /* Cannot start a write transaction without first holding a read
- ** transaction. */
- assert( pWal->readLock>=0 );
- if( pWal->readOnly ){
- return SQLITE_READONLY;
- }
- /* Only one writer allowed at a time. Get the write lock. Return
- ** SQLITE_BUSY if unable.
- */
- rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
- if( rc ){
- return rc;
- }
- pWal->writeLock = 1;
- /* If another connection has written to the database file since the
- ** time the read transaction on this connection was started, then
- ** the write is disallowed.
- */
- if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
- walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
- pWal->writeLock = 0;
- rc = SQLITE_BUSY_SNAPSHOT;
- }
- return rc;
- }
- /*
- ** End a write transaction. The commit has already been done. This
- ** routine merely releases the lock.
- */
- int sqlite3WalEndWriteTransaction(Wal *pWal){
- if( pWal->writeLock ){
- walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
- pWal->writeLock = 0;
- pWal->truncateOnCommit = 0;
- }
- return SQLITE_OK;
- }
- /*
- ** If any data has been written (but not committed) to the log file, this
- ** function moves the write-pointer back to the start of the transaction.
- **
- ** Additionally, the callback function is invoked for each frame written
- ** to the WAL since the start of the transaction. If the callback returns
- ** other than SQLITE_OK, it is not invoked again and the error code is
- ** returned to the caller.
- **
- ** Otherwise, if the callback function does not return an error, this
- ** function returns SQLITE_OK.
- */
- int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
- int rc = SQLITE_OK;
- if( ALWAYS(pWal->writeLock) ){
- Pgno iMax = pWal->hdr.mxFrame;
- Pgno iFrame;
-
- /* Restore the clients cache of the wal-index header to the state it
- ** was in before the client began writing to the database.
- */
- memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
- for(iFrame=pWal->hdr.mxFrame+1;
- ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
- iFrame++
- ){
- /* This call cannot fail. Unless the page for which the page number
- ** is passed as the second argument is (a) in the cache and
- ** (b) has an outstanding reference, then xUndo is either a no-op
- ** (if (a) is false) or simply expels the page from the cache (if (b)
- ** is false).
- **
- ** If the upper layer is doing a rollback, it is guaranteed that there
- ** are no outstanding references to any page other than page 1. And
- ** page 1 is never written to the log until the transaction is
- ** committed. As a result, the call to xUndo may not fail.
- */
- assert( walFramePgno(pWal, iFrame)!=1 );
- rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
- }
- if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
- }
- assert( rc==SQLITE_OK );
- return rc;
- }
- /*
- ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
- ** values. This function populates the array with values required to
- ** "rollback" the write position of the WAL handle back to the current
- ** point in the event of a savepoint rollback (via WalSavepointUndo()).
- */
- void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
- assert( pWal->writeLock );
- aWalData[0] = pWal->hdr.mxFrame;
- aWalData[1] = pWal->hdr.aFrameCksum[0];
- aWalData[2] = pWal->hdr.aFrameCksum[1];
- aWalData[3] = pWal->nCkpt;
- }
- /*
- ** Move the write position of the WAL back to the point identified by
- ** the values in the aWalData[] array. aWalData must point to an array
- ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
- ** by a call to WalSavepoint().
- */
- int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
- int rc = SQLITE_OK;
- assert( pWal->writeLock );
- assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
- if( aWalData[3]!=pWal->nCkpt ){
- /* This savepoint was opened immediately after the write-transaction
- ** was started. Right after that, the writer decided to wrap around
- ** to the start of the log. Update the savepoint values to match.
- */
- aWalData[0] = 0;
- aWalData[3] = pWal->nCkpt;
- }
- if( aWalData[0]<pWal->hdr.mxFrame ){
- pWal->hdr.mxFrame = aWalData[0];
- pWal->hdr.aFrameCksum[0] = aWalData[1];
- pWal->hdr.aFrameCksum[1] = aWalData[2];
- walCleanupHash(pWal);
- }
- return rc;
- }
- /*
- ** This function is called just before writing a set of frames to the log
- ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
- ** to the current log file, it is possible to overwrite the start of the
- ** existing log file with the new frames (i.e. "reset" the log). If so,
- ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
- ** unchanged.
- **
- ** SQLITE_OK is returned if no error is encountered (regardless of whether
- ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
- ** if an error occurs.
- */
- static int walRestartLog(Wal *pWal){
- int rc = SQLITE_OK;
- int cnt;
- if( pWal->readLock==0 ){
- volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
- assert( pInfo->nBackfill==pWal->hdr.mxFrame );
- if( pInfo->nBackfill>0 ){
- u32 salt1;
- sqlite3_randomness(4, &salt1);
- rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
- if( rc==SQLITE_OK ){
- /* If all readers are using WAL_READ_LOCK(0) (in other words if no
- ** readers are currently using the WAL), then the transactions
- ** frames will overwrite the start of the existing log. Update the
- ** wal-index header to reflect this.
- **
- ** In theory it would be Ok to update the cache of the header only
- ** at this point. But updating the actual wal-index header is also
- ** safe and means there is no special case for sqlite3WalUndo()
- ** to handle if this transaction is rolled back.
- */
- int i; /* Loop counter */
- u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
- pWal->nCkpt++;
- pWal->hdr.mxFrame = 0;
- sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
- aSalt[1] = salt1;
- walIndexWriteHdr(pWal);
- pInfo->nBackfill = 0;
- pInfo->aReadMark[1] = 0;
- for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
- assert( pInfo->aReadMark[0]==0 );
- walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
- }else if( rc!=SQLITE_BUSY ){
- return rc;
- }
- }
- walUnlockShared(pWal, WAL_READ_LOCK(0));
- pWal->readLock = -1;
- cnt = 0;
- do{
- int notUsed;
- rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt);
- }while( rc==WAL_RETRY );
- assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
- testcase( (rc&0xff)==SQLITE_IOERR );
- testcase( rc==SQLITE_PROTOCOL );
- testcase( rc==SQLITE_OK );
- }
- return rc;
- }
- /*
- ** Information about the current state of the WAL file and where
- ** the next fsync should occur - passed from sqlite3WalFrames() into
- ** walWriteToLog().
- */
- typedef struct WalWriter {
- Wal *pWal; /* The complete WAL information */
- sqlite3_file *pFd; /* The WAL file to which we write */
- sqlite3_int64 iSyncPoint; /* Fsync at this offset */
- int syncFlags; /* Flags for the fsync */
- int szPage; /* Size of one page */
- } WalWriter;
- /*
- ** Write iAmt bytes of content into the WAL file beginning at iOffset.
- ** Do a sync when crossing the p->iSyncPoint boundary.
- **
- ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
- ** first write the part before iSyncPoint, then sync, then write the
- ** rest.
- */
- static int walWriteToLog(
- WalWriter *p, /* WAL to write to */
- void *pContent, /* Content to be written */
- int iAmt, /* Number of bytes to write */
- sqlite3_int64 iOffset /* Start writing at this offset */
- ){
- int rc;
- if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
- int iFirstAmt = (int)(p->iSyncPoint - iOffset);
- rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
- if( rc ) return rc;
- iOffset += iFirstAmt;
- iAmt -= iFirstAmt;
- pContent = (void*)(iFirstAmt + (char*)pContent);
- assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
- rc = sqlite3OsSync(p->pFd, p->syncFlags);
- if( iAmt==0 || rc ) return rc;
- }
- rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
- return rc;
- }
- /*
- ** Write out a single frame of the WAL
- */
- static int walWriteOneFrame(
- WalWriter *p, /* Where to write the frame */
- PgHdr *pPage, /* The page of the frame to be written */
- int nTruncate, /* The commit flag. Usually 0. >0 for commit */
- sqlite3_int64 iOffset /* Byte offset at which to write */
- ){
- int rc; /* Result code from subfunctions */
- void *pData; /* Data actually written */
- u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
- #if defined(SQLITE_HAS_CODEC)
- if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
- #else
- pData = pPage->pData;
- #endif
- walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
- rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
- if( rc ) return rc;
- /* Write the page data */
- rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
- return rc;
- }
- /*
- ** Write a set of frames to the log. The caller must hold the write-lock
- ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
- */
- int sqlite3WalFrames(
- Wal *pWal, /* Wal handle to write to */
- int szPage, /* Database page-size in bytes */
- PgHdr *pList, /* List of dirty pages to write */
- Pgno nTruncate, /* Database size after this commit */
- int isCommit, /* True if this is a commit */
- int sync_flags /* Flags to pass to OsSync() (or 0) */
- ){
- int rc; /* Used to catch return codes */
- u32 iFrame; /* Next frame address */
- PgHdr *p; /* Iterator to run through pList with. */
- PgHdr *pLast = 0; /* Last frame in list */
- int nExtra = 0; /* Number of extra copies of last page */
- int szFrame; /* The size of a single frame */
- i64 iOffset; /* Next byte to write in WAL file */
- WalWriter w; /* The writer */
- assert( pList );
- assert( pWal->writeLock );
- /* If this frame set completes a transaction, then nTruncate>0. If
- ** nTruncate==0 then this frame set does not complete the transaction. */
- assert( (isCommit!=0)==(nTruncate!=0) );
- #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
- { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
- WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
- pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
- }
- #endif
- /* See if it is possible to write these frames into the start of the
- ** log file, instead of appending to it at pWal->hdr.mxFrame.
- */
- if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
- return rc;
- }
- /* If this is the first frame written into the log, write the WAL
- ** header to the start of the WAL file. See comments at the top of
- ** this source file for a description of the WAL header format.
- */
- iFrame = pWal->hdr.mxFrame;
- if( iFrame==0 ){
- u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
- u32 aCksum[2]; /* Checksum for wal-header */
- sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
- sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
- sqlite3Put4byte(&aWalHdr[8], szPage);
- sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
- if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
- memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
- walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
- sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
- sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
-
- pWal->szPage = szPage;
- pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
- pWal->hdr.aFrameCksum[0] = aCksum[0];
- pWal->hdr.aFrameCksum[1] = aCksum[1];
- pWal->truncateOnCommit = 1;
- rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
- WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
- if( rc!=SQLITE_OK ){
- return rc;
- }
- /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
- ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
- ** an out-of-order write following a WAL restart could result in
- ** database corruption. See the ticket:
- **
- ** http://localhost:591/sqlite/info/ff5be73dee
- */
- if( pWal->syncHeader && sync_flags ){
- rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
- if( rc ) return rc;
- }
- }
- assert( (int)pWal->szPage==szPage );
- /* Setup information needed to write frames into the WAL */
- w.pWal = pWal;
- w.pFd = pWal->pWalFd;
- w.iSyncPoint = 0;
- w.syncFlags = sync_flags;
- w.szPage = szPage;
- iOffset = walFrameOffset(iFrame+1, szPage);
- szFrame = szPage + WAL_FRAME_HDRSIZE;
- /* Write all frames into the log file exactly once */
- for(p=pList; p; p=p->pDirty){
- int nDbSize; /* 0 normally. Positive == commit flag */
- iFrame++;
- assert( iOffset==walFrameOffset(iFrame, szPage) );
- nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
- rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
- if( rc ) return rc;
- pLast = p;
- iOffset += szFrame;
- }
- /* If this is the end of a transaction, then we might need to pad
- ** the transaction and/or sync the WAL file.
- **
- ** Padding and syncing only occur if this set of frames complete a
- ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
- ** or synchonous==OFF, then no padding or syncing are needed.
- **
- ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
- ** needed and only the sync is done. If padding is needed, then the
- ** final frame is repeated (with its commit mark) until the next sector
- ** boundary is crossed. Only the part of the WAL prior to the last
- ** sector boundary is synced; the part of the last frame that extends
- ** past the sector boundary is written after the sync.
- */
- if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
- if( pWal->padToSectorBoundary ){
- int sectorSize = sqlite3SectorSize(pWal->pWalFd);
- w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
- while( iOffset<w.iSyncPoint ){
- rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
- if( rc ) return rc;
- iOffset += szFrame;
- nExtra++;
- }
- }else{
- rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
- }
- }
- /* If this frame set completes the first transaction in the WAL and
- ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
- ** journal size limit, if possible.
- */
- if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
- i64 sz = pWal->mxWalSize;
- if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
- sz = walFrameOffset(iFrame+nExtra+1, szPage);
- }
- walLimitSize(pWal, sz);
- pWal->truncateOnCommit = 0;
- }
- /* Append data to the wal-index. It is not necessary to lock the
- ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
- ** guarantees that there are no other writers, and no data that may
- ** be in use by existing readers is being overwritten.
- */
- iFrame = pWal->hdr.mxFrame;
- for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
- iFrame++;
- rc = walIndexAppend(pWal, iFrame, p->pgno);
- }
- while( rc==SQLITE_OK && nExtra>0 ){
- iFrame++;
- nExtra--;
- rc = walIndexAppend(pWal, iFrame, pLast->pgno);
- }
- if( rc==SQLITE_OK ){
- /* Update the private copy of the header. */
- pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
- testcase( szPage<=32768 );
- testcase( szPage>=65536 );
- pWal->hdr.mxFrame = iFrame;
- if( isCommit ){
- pWal->hdr.iChange++;
- pWal->hdr.nPage = nTruncate;
- }
- /* If this is a commit, update the wal-index header too. */
- if( isCommit ){
- walIndexWriteHdr(pWal);
- pWal->iCallback = iFrame;
- }
- }
- WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
- return rc;
- }
- /*
- ** This routine is called to implement sqlite3_wal_checkpoint() and
- ** related interfaces.
- **
- ** Obtain a CHECKPOINT lock and then backfill as much information as
- ** we can from WAL into the database.
- **
- ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
- ** callback. In this case this function runs a blocking checkpoint.
- */
- int sqlite3WalCheckpoint(
- Wal *pWal, /* Wal connection */
- int eMode, /* PASSIVE, FULL or RESTART */
- int (*xBusy)(void*), /* Function to call when busy */
- void *pBusyArg, /* Context argument for xBusyHandler */
- int sync_flags, /* Flags to sync db file with (or 0) */
- int nBuf, /* Size of temporary buffer */
- u8 *zBuf, /* Temporary buffer to use */
- int *pnLog, /* OUT: Number of frames in WAL */
- int *pnCkpt /* OUT: Number of backfilled frames in WAL */
- ){
- int rc; /* Return code */
- int isChanged = 0; /* True if a new wal-index header is loaded */
- int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
- assert( pWal->ckptLock==0 );
- assert( pWal->writeLock==0 );
- if( pWal->readOnly ) return SQLITE_READONLY;
- WALTRACE(("WAL%p: checkpoint begins\n", pWal));
- rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
- if( rc ){
- /* Usually this is SQLITE_BUSY meaning that another thread or process
- ** is already running a checkpoint, or maybe a recovery. But it might
- ** also be SQLITE_IOERR. */
- return rc;
- }
- pWal->ckptLock = 1;
- /* If this is a blocking-checkpoint, then obtain the write-lock as well
- ** to prevent any writers from running while the checkpoint is underway.
- ** This has to be done before the call to walIndexReadHdr() below.
- **
- ** If the writer lock cannot be obtained, then a passive checkpoint is
- ** run instead. Since the checkpointer is not holding the writer lock,
- ** there is no point in blocking waiting for any readers. Assuming no
- ** other error occurs, this function will return SQLITE_BUSY to the caller.
- */
- if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
- rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
- if( rc==SQLITE_OK ){
- pWal->writeLock = 1;
- }else if( rc==SQLITE_BUSY ){
- eMode2 = SQLITE_CHECKPOINT_PASSIVE;
- rc = SQLITE_OK;
- }
- }
- /* Read the wal-index header. */
- if( rc==SQLITE_OK ){
- rc = walIndexReadHdr(pWal, &isChanged);
- if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
- sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
- }
- }
- /* Copy data from the log to the database file. */
- if( rc==SQLITE_OK ){
- if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
- rc = SQLITE_CORRUPT_BKPT;
- }else{
- rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
- }
- /* If no error occurred, set the output variables. */
- if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
- if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
- if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
- }
- }
- if( isChanged ){
- /* If a new wal-index header was loaded before the checkpoint was
- ** performed, then the pager-cache associated with pWal is now
- ** out of date. So zero the cached wal-index header to ensure that
- ** next time the pager opens a snapshot on this database it knows that
- ** the cache needs to be reset.
- */
- memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
- }
- /* Release the locks. */
- sqlite3WalEndWriteTransaction(pWal);
- walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
- pWal->ckptLock = 0;
- WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
- return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
- }
- /* Return the value to pass to a sqlite3_wal_hook callback, the
- ** number of frames in the WAL at the point of the last commit since
- ** sqlite3WalCallback() was called. If no commits have occurred since
- ** the last call, then return 0.
- */
- int sqlite3WalCallback(Wal *pWal){
- u32 ret = 0;
- if( pWal ){
- ret = pWal->iCallback;
- pWal->iCallback = 0;
- }
- return (int)ret;
- }
- /*
- ** This function is called to change the WAL subsystem into or out
- ** of locking_mode=EXCLUSIVE.
- **
- ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
- ** into locking_mode=NORMAL. This means that we must acquire a lock
- ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
- ** or if the acquisition of the lock fails, then return 0. If the
- ** transition out of exclusive-mode is successful, return 1. This
- ** operation must occur while the pager is still holding the exclusive
- ** lock on the main database file.
- **
- ** If op is one, then change from locking_mode=NORMAL into
- ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
- ** be released. Return 1 if the transition is made and 0 if the
- ** WAL is already in exclusive-locking mode - meaning that this
- ** routine is a no-op. The pager must already hold the exclusive lock
- ** on the main database file before invoking this operation.
- **
- ** If op is negative, then do a dry-run of the op==1 case but do
- ** not actually change anything. The pager uses this to see if it
- ** should acquire the database exclusive lock prior to invoking
- ** the op==1 case.
- */
- int sqlite3WalExclusiveMode(Wal *pWal, int op){
- int rc;
- assert( pWal->writeLock==0 );
- assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
- /* pWal->readLock is usually set, but might be -1 if there was a
- ** prior error while attempting to acquire are read-lock. This cannot
- ** happen if the connection is actually in exclusive mode (as no xShmLock
- ** locks are taken in this case). Nor should the pager attempt to
- ** upgrade to exclusive-mode following such an error.
- */
- assert( pWal->readLock>=0 || pWal->lockError );
- assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
- if( op==0 ){
- if( pWal->exclusiveMode ){
- pWal->exclusiveMode = 0;
- if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
- pWal->exclusiveMode = 1;
- }
- rc = pWal->exclusiveMode==0;
- }else{
- /* Already in locking_mode=NORMAL */
- rc = 0;
- }
- }else if( op>0 ){
- assert( pWal->exclusiveMode==0 );
- assert( pWal->readLock>=0 );
- walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
- pWal->exclusiveMode = 1;
- rc = 1;
- }else{
- rc = pWal->exclusiveMode==0;
- }
- return rc;
- }
- /*
- ** Return true if the argument is non-NULL and the WAL module is using
- ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
- ** WAL module is using shared-memory, return false.
- */
- int sqlite3WalHeapMemory(Wal *pWal){
- return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
- }
- #ifdef SQLITE_ENABLE_ZIPVFS
- /*
- ** If the argument is not NULL, it points to a Wal object that holds a
- ** read-lock. This function returns the database page-size if it is known,
- ** or zero if it is not (or if pWal is NULL).
- */
- int sqlite3WalFramesize(Wal *pWal){
- assert( pWal==0 || pWal->readLock>=0 );
- return (pWal ? pWal->szPage : 0);
- }
- #endif
- #endif /* #ifndef SQLITE_OMIT_WAL */
|