slab.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /*
  2. * File : slab.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2008 - 2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2008-07-12 Bernard the first version
  13. * 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca
  14. * 2010-10-23 yi.qiu add module memory allocator
  15. * 2010-12-18 yi.qiu fix zone release bug
  16. */
  17. /*
  18. * KERN_SLABALLOC.C - Kernel SLAB memory allocator
  19. *
  20. * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
  21. *
  22. * This code is derived from software contributed to The DragonFly Project
  23. * by Matthew Dillon <dillon@backplane.com>
  24. *
  25. * Redistribution and use in source and binary forms, with or without
  26. * modification, are permitted provided that the following conditions
  27. * are met:
  28. *
  29. * 1. Redistributions of source code must retain the above copyright
  30. * notice, this list of conditions and the following disclaimer.
  31. * 2. Redistributions in binary form must reproduce the above copyright
  32. * notice, this list of conditions and the following disclaimer in
  33. * the documentation and/or other materials provided with the
  34. * distribution.
  35. * 3. Neither the name of The DragonFly Project nor the names of its
  36. * contributors may be used to endorse or promote products derived
  37. * from this software without specific, prior written permission.
  38. *
  39. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  40. * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  41. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  42. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  43. * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  44. * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
  45. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  46. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
  47. * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  48. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  49. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. */
  53. #include <rthw.h>
  54. #include <rtthread.h>
  55. #include "kservice.h"
  56. #define RT_MEM_STATS
  57. #if defined (RT_USING_HEAP) && defined (RT_USING_SLAB)
  58. /* some statistical variable */
  59. #ifdef RT_MEM_STATS
  60. static rt_size_t used_mem, max_mem;
  61. #endif
  62. #ifdef RT_USING_HOOK
  63. static void (*rt_malloc_hook)(void *ptr, rt_size_t size);
  64. static void (*rt_free_hook)(void *ptr);
  65. /**
  66. * @addtogroup Hook
  67. */
  68. /*@{*/
  69. /**
  70. * This function will set a hook function, which will be invoked when a memory
  71. * block is allocated from heap memory.
  72. *
  73. * @param hook the hook function
  74. */
  75. void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
  76. {
  77. rt_malloc_hook = hook;
  78. }
  79. /**
  80. * This function will set a hook function, which will be invoked when a memory
  81. * block is released to heap memory.
  82. *
  83. * @param hook the hook function
  84. */
  85. void rt_free_sethook(void (*hook)(void *ptr))
  86. {
  87. rt_free_hook = hook;
  88. }
  89. /*@}*/
  90. #endif
  91. /*
  92. * slab allocator implementation
  93. *
  94. * A slab allocator reserves a ZONE for each chunk size, then lays the
  95. * chunks out in an array within the zone. Allocation and deallocation
  96. * is nearly instantanious, and fragmentation/overhead losses are limited
  97. * to a fixed worst-case amount.
  98. *
  99. * The downside of this slab implementation is in the chunk size
  100. * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
  101. * In a kernel implementation all this memory will be physical so
  102. * the zone size is adjusted downward on machines with less physical
  103. * memory. The upside is that overhead is bounded... this is the *worst*
  104. * case overhead.
  105. *
  106. * Slab management is done on a per-cpu basis and no locking or mutexes
  107. * are required, only a critical section. When one cpu frees memory
  108. * belonging to another cpu's slab manager an asynchronous IPI message
  109. * will be queued to execute the operation. In addition, both the
  110. * high level slab allocator and the low level zone allocator optimize
  111. * M_ZERO requests, and the slab allocator does not have to pre initialize
  112. * the linked list of chunks.
  113. *
  114. * XXX Balancing is needed between cpus. Balance will be handled through
  115. * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
  116. *
  117. * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
  118. * the new zone should be restricted to M_USE_RESERVE requests only.
  119. *
  120. * Alloc Size Chunking Number of zones
  121. * 0-127 8 16
  122. * 128-255 16 8
  123. * 256-511 32 8
  124. * 512-1023 64 8
  125. * 1024-2047 128 8
  126. * 2048-4095 256 8
  127. * 4096-8191 512 8
  128. * 8192-16383 1024 8
  129. * 16384-32767 2048 8
  130. * (if RT_MM_PAGE_SIZE is 4K the maximum zone allocation is 16383)
  131. *
  132. * Allocations >= zone_limit go directly to kmem.
  133. *
  134. * API REQUIREMENTS AND SIDE EFFECTS
  135. *
  136. * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
  137. * have remained compatible with the following API requirements:
  138. *
  139. * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
  140. * + all power-of-2 sized allocations are power-of-2 aligned (twe)
  141. * + malloc(0) is allowed and returns non-RT_NULL (ahc driver)
  142. * + ability to allocate arbitrarily large chunks of memory
  143. */
  144. /*
  145. * Chunk structure for free elements
  146. */
  147. typedef struct slab_chunk
  148. {
  149. struct slab_chunk *c_next;
  150. } slab_chunk;
  151. /*
  152. * The IN-BAND zone header is placed at the beginning of each zone.
  153. */
  154. typedef struct slab_zone
  155. {
  156. rt_int32_t z_magic; /* magic number for sanity check */
  157. rt_int32_t z_nfree; /* total free chunks / ualloc space in zone */
  158. rt_int32_t z_nmax; /* maximum free chunks */
  159. struct slab_zone *z_next; /* zoneary[] link if z_nfree non-zero */
  160. rt_uint8_t *z_baseptr; /* pointer to start of chunk array */
  161. rt_int32_t z_uindex; /* current initial allocation index */
  162. rt_int32_t z_chunksize; /* chunk size for validation */
  163. rt_int32_t z_zoneindex; /* zone index */
  164. slab_chunk *z_freechunk; /* free chunk list */
  165. } slab_zone;
  166. #define ZALLOC_SLAB_MAGIC 0x51ab51ab
  167. #define ZALLOC_ZONE_LIMIT (16 * 1024) /* max slab-managed alloc */
  168. #define ZALLOC_MIN_ZONE_SIZE (32 * 1024) /* minimum zone size */
  169. #define ZALLOC_MAX_ZONE_SIZE (128 * 1024) /* maximum zone size */
  170. #define NZONES 72 /* number of zones */
  171. #define ZONE_RELEASE_THRESH 2 /* threshold number of zones */
  172. static slab_zone *zone_array[NZONES]; /* linked list of zones NFree > 0 */
  173. static slab_zone *zone_free; /* whole zones that have become free */
  174. static int zone_free_cnt;
  175. static int zone_size;
  176. static int zone_limit;
  177. static int zone_page_cnt;
  178. /*
  179. * Misc constants. Note that allocations that are exact multiples of
  180. * RT_MM_PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
  181. */
  182. #define MIN_CHUNK_SIZE 8 /* in bytes */
  183. #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
  184. /*
  185. * Array of descriptors that describe the contents of each page
  186. */
  187. #define PAGE_TYPE_FREE 0x00
  188. #define PAGE_TYPE_SMALL 0x01
  189. #define PAGE_TYPE_LARGE 0x02
  190. struct memusage
  191. {
  192. rt_uint32_t type:2 ; /* page type */
  193. rt_uint32_t size:30; /* pages allocated or offset from zone */
  194. };
  195. static struct memusage *memusage = RT_NULL;
  196. #define btokup(addr) (&memusage[((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS])
  197. static rt_uint32_t heap_start, heap_end;
  198. /* page allocator */
  199. struct rt_page_head
  200. {
  201. struct rt_page_head *next; /* next valid page */
  202. rt_size_t page; /* number of page */
  203. /* dummy */
  204. char dummy[RT_MM_PAGE_SIZE - (sizeof(struct rt_page_head*) + sizeof (rt_size_t))];
  205. };
  206. static struct rt_page_head *rt_page_list;
  207. static struct rt_semaphore heap_sem;
  208. void *rt_page_alloc(rt_size_t npages)
  209. {
  210. struct rt_page_head *b, *n;
  211. struct rt_page_head **prev;
  212. if(npages == 0)
  213. return RT_NULL;
  214. /* lock heap */
  215. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  216. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  217. {
  218. if (b->page > npages)
  219. {
  220. /* splite pages */
  221. n = b + npages;
  222. n->next = b->next;
  223. n->page = b->page - npages;
  224. *prev = n;
  225. break;
  226. }
  227. if (b->page == npages)
  228. {
  229. /* this node fit, remove this node */
  230. *prev = b->next;
  231. break;
  232. }
  233. }
  234. /* unlock heap */
  235. rt_sem_release(&heap_sem);
  236. return b;
  237. }
  238. void rt_page_free(void *addr, rt_size_t npages)
  239. {
  240. struct rt_page_head *b, *n;
  241. struct rt_page_head **prev;
  242. RT_ASSERT(addr != RT_NULL);
  243. RT_ASSERT((rt_uint32_t)addr % RT_MM_PAGE_SIZE == 0);
  244. RT_ASSERT(npages != 0);
  245. n = (struct rt_page_head *)addr;
  246. /* lock heap */
  247. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  248. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  249. {
  250. RT_ASSERT(b->page > 0);
  251. RT_ASSERT(b > n || b + b->page <= n);
  252. if (b + b->page == n)
  253. {
  254. if (b + (b->page += npages) == b->next)
  255. {
  256. b->page += b->next->page;
  257. b->next = b->next->next;
  258. }
  259. goto _return;
  260. }
  261. if (b == n + npages)
  262. {
  263. n->page = b->page + npages;
  264. n->next = b->next;
  265. *prev = n;
  266. goto _return;
  267. }
  268. if (b > n + npages)
  269. break;
  270. }
  271. n->page = npages;
  272. n->next = b;
  273. *prev = n;
  274. _return:
  275. /* unlock heap */
  276. rt_sem_release(&heap_sem);
  277. }
  278. /*
  279. * Initialize the page allocator
  280. */
  281. static void rt_page_init(void *addr, rt_size_t npages)
  282. {
  283. RT_ASSERT(addr != RT_NULL);
  284. RT_ASSERT(npages != 0);
  285. rt_page_list = RT_NULL;
  286. rt_page_free(addr, npages);
  287. }
  288. /**
  289. * @ingroup SystemInit
  290. *
  291. * This function will init system heap
  292. *
  293. * @param begin_addr the beginning address of system page
  294. * @param end_addr the end address of system page
  295. */
  296. void rt_system_heap_init(void *begin_addr, void *end_addr)
  297. {
  298. rt_uint32_t limsize, npages;
  299. RT_DEBUG_NOT_IN_INTERRUPT;
  300. /* align begin and end addr to page */
  301. heap_start = RT_ALIGN((rt_uint32_t)begin_addr, RT_MM_PAGE_SIZE);
  302. heap_end = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_MM_PAGE_SIZE);
  303. if (heap_start >= heap_end)
  304. {
  305. rt_kprintf("rt_system_heap_init, wrong address[0x%x - 0x%x]\n",
  306. (rt_uint32_t)begin_addr, (rt_uint32_t)end_addr);
  307. return;
  308. }
  309. limsize = heap_end - heap_start;
  310. npages = limsize / RT_MM_PAGE_SIZE;
  311. /* initialize heap semaphore */
  312. rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO);
  313. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  314. ("heap[0x%x - 0x%x], size 0x%x, 0x%x pages\n", heap_start, heap_end, limsize, npages));
  315. /* init pages */
  316. rt_page_init((void *)heap_start, npages);
  317. /* calculate zone size */
  318. zone_size = ZALLOC_MIN_ZONE_SIZE;
  319. while (zone_size < ZALLOC_MAX_ZONE_SIZE && (zone_size << 1) < (limsize/1024))
  320. zone_size <<= 1;
  321. zone_limit = zone_size / 4;
  322. if (zone_limit > ZALLOC_ZONE_LIMIT)
  323. zone_limit = ZALLOC_ZONE_LIMIT;
  324. zone_page_cnt = zone_size / RT_MM_PAGE_SIZE;
  325. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  326. ("zone size 0x%x, zone page count 0x%x\n", zone_size, zone_page_cnt));
  327. /* allocate memusage array */
  328. limsize = npages * sizeof(struct memusage);
  329. limsize = RT_ALIGN(limsize, RT_MM_PAGE_SIZE);
  330. memusage = rt_page_alloc(limsize/RT_MM_PAGE_SIZE);
  331. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  332. ("memusage 0x%x, size 0x%x\n", (rt_uint32_t)memusage, limsize));
  333. }
  334. /*
  335. * Calculate the zone index for the allocation request size and set the
  336. * allocation request size to that particular zone's chunk size.
  337. */
  338. rt_inline int zoneindex(rt_uint32_t *bytes)
  339. {
  340. rt_uint32_t n = (rt_uint32_t)*bytes; /* unsigned for shift opt */
  341. if (n < 128)
  342. {
  343. *bytes = n = (n + 7) & ~7;
  344. return(n / 8 - 1); /* 8 byte chunks, 16 zones */
  345. }
  346. if (n < 256)
  347. {
  348. *bytes = n = (n + 15) & ~15;
  349. return(n / 16 + 7);
  350. }
  351. if (n < 8192)
  352. {
  353. if (n < 512)
  354. {
  355. *bytes = n = (n + 31) & ~31;
  356. return(n / 32 + 15);
  357. }
  358. if (n < 1024)
  359. {
  360. *bytes = n = (n + 63) & ~63;
  361. return(n / 64 + 23);
  362. }
  363. if (n < 2048)
  364. {
  365. *bytes = n = (n + 127) & ~127;
  366. return(n / 128 + 31);
  367. }
  368. if (n < 4096)
  369. {
  370. *bytes = n = (n + 255) & ~255;
  371. return(n / 256 + 39);
  372. }
  373. *bytes = n = (n + 511) & ~511;
  374. return(n / 512 + 47);
  375. }
  376. if (n < 16384)
  377. {
  378. *bytes = n = (n + 1023) & ~1023;
  379. return(n / 1024 + 55);
  380. }
  381. rt_kprintf("Unexpected byte count %d", n);
  382. return 0;
  383. }
  384. /**
  385. * @addtogroup MM
  386. */
  387. /*@{*/
  388. /**
  389. * This function will allocate a block from system heap memory.
  390. * - If the nbytes is less than zero,
  391. * or
  392. * - If there is no nbytes sized memory valid in system,
  393. * the RT_NULL is returned.
  394. *
  395. * @param size the size of memory to be allocated
  396. *
  397. * @return the allocated memory
  398. */
  399. void *rt_malloc(rt_size_t size)
  400. {
  401. slab_zone *z;
  402. rt_int32_t zi;
  403. slab_chunk *chunk;
  404. struct memusage *kup;
  405. /* zero size, return RT_NULL */
  406. if (size == 0)
  407. return RT_NULL;
  408. #ifdef RT_USING_MODULE
  409. if (rt_module_self() != RT_NULL)
  410. return rt_module_malloc(size);
  411. #endif
  412. /*
  413. * Handle large allocations directly. There should not be very many of
  414. * these so performance is not a big issue.
  415. */
  416. if (size >= zone_limit)
  417. {
  418. size = RT_ALIGN(size, RT_MM_PAGE_SIZE);
  419. chunk = rt_page_alloc(size >> RT_MM_PAGE_BITS);
  420. if (chunk == RT_NULL)
  421. return RT_NULL;
  422. /* set kup */
  423. kup = btokup(chunk);
  424. kup->type = PAGE_TYPE_LARGE;
  425. kup->size = size >> RT_MM_PAGE_BITS;
  426. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("malloc a large memory 0x%x, page cnt %d, kup %d\n",
  427. size,
  428. size >> RT_MM_PAGE_BITS,
  429. ((rt_uint32_t)chunk - heap_start) >> RT_MM_PAGE_BITS));
  430. /* lock heap */
  431. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  432. #ifdef RT_MEM_STATS
  433. used_mem += size;
  434. if (used_mem > max_mem)
  435. max_mem = used_mem;
  436. #endif
  437. goto done;
  438. }
  439. /* lock heap */
  440. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  441. /*
  442. * Attempt to allocate out of an existing zone. First try the free list,
  443. * then allocate out of unallocated space. If we find a good zone move
  444. * it to the head of the list so later allocations find it quickly
  445. * (we might have thousands of zones in the list).
  446. *
  447. * Note: zoneindex() will panic of size is too large.
  448. */
  449. zi = zoneindex(&size);
  450. RT_ASSERT(zi < NZONES);
  451. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("try to malloc 0x%x on zone: %d\n", size, zi));
  452. if ((z = zone_array[zi]) != RT_NULL)
  453. {
  454. RT_ASSERT(z->z_nfree > 0);
  455. /* Remove us from the zone_array[] when we become empty */
  456. if (--z->z_nfree == 0)
  457. {
  458. zone_array[zi] = z->z_next;
  459. z->z_next = RT_NULL;
  460. }
  461. /*
  462. * No chunks are available but nfree said we had some memory, so
  463. * it must be available in the never-before-used-memory area
  464. * governed by uindex. The consequences are very serious if our zone
  465. * got corrupted so we use an explicit rt_kprintf rather then a KASSERT.
  466. */
  467. if (z->z_uindex + 1 != z->z_nmax)
  468. {
  469. z->z_uindex = z->z_uindex + 1;
  470. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  471. }
  472. else
  473. {
  474. /* find on free chunk list */
  475. chunk = z->z_freechunk;
  476. /* remove this chunk from list */
  477. z->z_freechunk = z->z_freechunk->c_next;
  478. }
  479. #ifdef RT_MEM_STATS
  480. used_mem += z->z_chunksize;
  481. if (used_mem > max_mem)
  482. max_mem = used_mem;
  483. #endif
  484. goto done;
  485. }
  486. /*
  487. * If all zones are exhausted we need to allocate a new zone for this
  488. * index.
  489. *
  490. * At least one subsystem, the tty code (see CROUND) expects power-of-2
  491. * allocations to be power-of-2 aligned. We maintain compatibility by
  492. * adjusting the base offset below.
  493. */
  494. {
  495. rt_int32_t off;
  496. if ((z = zone_free) != RT_NULL)
  497. {
  498. /* remove zone from free zone list */
  499. zone_free = z->z_next;
  500. -- zone_free_cnt;
  501. }
  502. else
  503. {
  504. /* unlock heap, since page allocator will think about lock */
  505. rt_sem_release(&heap_sem);
  506. /* allocate a zone from page */
  507. z = rt_page_alloc(zone_size / RT_MM_PAGE_SIZE);
  508. if (z == RT_NULL)
  509. goto fail;
  510. /* lock heap */
  511. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  512. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("alloc a new zone: 0x%x\n", (rt_uint32_t)z));
  513. /* set message usage */
  514. for (off = 0, kup = btokup(z); off < zone_page_cnt; off ++)
  515. {
  516. kup->type = PAGE_TYPE_SMALL;
  517. kup->size = off;
  518. kup ++;
  519. }
  520. }
  521. /* clear to zero */
  522. rt_memset(z, 0, sizeof(slab_zone));
  523. /* offset of slab zone struct in zone */
  524. off = sizeof(slab_zone);
  525. /*
  526. * Guarentee power-of-2 alignment for power-of-2-sized chunks.
  527. * Otherwise just 8-byte align the data.
  528. */
  529. if ((size | (size - 1)) + 1 == (size << 1))
  530. off = (off + size - 1) & ~(size - 1);
  531. else
  532. off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
  533. z->z_magic = ZALLOC_SLAB_MAGIC;
  534. z->z_zoneindex = zi;
  535. z->z_nmax = (zone_size - off) / size;
  536. z->z_nfree = z->z_nmax - 1;
  537. z->z_baseptr = (rt_uint8_t *)z + off;
  538. z->z_uindex = 0;
  539. z->z_chunksize = size;
  540. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  541. /* link to zone array */
  542. z->z_next = zone_array[zi];
  543. zone_array[zi] = z;
  544. #ifdef RT_MEM_STATS
  545. used_mem += z->z_chunksize;
  546. if (used_mem > max_mem)
  547. max_mem = used_mem;
  548. #endif
  549. }
  550. done:
  551. rt_sem_release(&heap_sem);
  552. RT_OBJECT_HOOK_CALL(rt_malloc_hook, ((char *)chunk, size));
  553. return chunk;
  554. fail:
  555. rt_sem_release(&heap_sem);
  556. return RT_NULL;
  557. }
  558. /**
  559. * This function will change the size of previously allocated memory block.
  560. *
  561. * @param ptr the previously allocated memory block
  562. * @param size the new size of memory block
  563. *
  564. * @return the allocated memory
  565. */
  566. void *rt_realloc(void *ptr, rt_size_t size)
  567. {
  568. void *nptr;
  569. slab_zone *z;
  570. struct memusage *kup;
  571. if (ptr == RT_NULL)
  572. return rt_malloc(size);
  573. if (size == 0)
  574. {
  575. rt_free(ptr);
  576. return RT_NULL;
  577. }
  578. #ifdef RT_USING_MODULE
  579. if (rt_module_self() != RT_NULL)
  580. return rt_module_realloc(ptr, size);
  581. #endif
  582. /*
  583. * Get the original allocation's zone. If the new request winds up
  584. * using the same chunk size we do not have to do anything.
  585. */
  586. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  587. if (kup->type == PAGE_TYPE_LARGE)
  588. {
  589. rt_size_t osize;
  590. osize = kup->size << RT_MM_PAGE_BITS;
  591. if ((nptr = rt_malloc(size)) == RT_NULL)
  592. return RT_NULL;
  593. rt_memcpy(nptr, ptr, size > osize ? osize : size);
  594. rt_free(ptr);
  595. return nptr;
  596. }
  597. else if (kup->type == PAGE_TYPE_SMALL)
  598. {
  599. z = (slab_zone *)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE);
  600. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  601. zoneindex(&size);
  602. if (z->z_chunksize == size)
  603. return(ptr); /* same chunk */
  604. /*
  605. * Allocate memory for the new request size. Note that zoneindex has
  606. * already adjusted the request size to the appropriate chunk size, which
  607. * should optimize our bcopy(). Then copy and return the new pointer.
  608. */
  609. if ((nptr = rt_malloc(size)) == RT_NULL)
  610. return RT_NULL;
  611. rt_memcpy(nptr, ptr, size > z->z_chunksize ? z->z_chunksize : size);
  612. rt_free(ptr);
  613. return nptr;
  614. }
  615. return RT_NULL;
  616. }
  617. /**
  618. * This function will contiguously allocate enough space for count objects
  619. * that are size bytes of memory each and returns a pointer to the allocated
  620. * memory.
  621. *
  622. * The allocated memory is filled with bytes of value zero.
  623. *
  624. * @param count number of objects to allocate
  625. * @param size size of the objects to allocate
  626. *
  627. * @return pointer to allocated memory / NULL pointer if there is an error
  628. */
  629. void *rt_calloc(rt_size_t count, rt_size_t size)
  630. {
  631. void *p;
  632. /* allocate 'count' objects of size 'size' */
  633. p = rt_malloc(count * size);
  634. /* zero the memory */
  635. if (p)
  636. rt_memset(p, 0, count * size);
  637. return p;
  638. }
  639. /**
  640. * This function will release the previously allocated memory block by rt_malloc.
  641. * The released memory block is taken back to system heap.
  642. *
  643. * @param ptr the address of memory which will be released
  644. */
  645. void rt_free(void *ptr)
  646. {
  647. slab_zone *z;
  648. slab_chunk *chunk;
  649. struct memusage *kup;
  650. /* free a RT_NULL pointer */
  651. if (ptr == RT_NULL)
  652. return ;
  653. RT_OBJECT_HOOK_CALL(rt_free_hook, (ptr));
  654. #ifdef RT_USING_MODULE
  655. if(rt_module_self() != RT_NULL)
  656. {
  657. rt_module_free(rt_module_self(), ptr);
  658. return;
  659. }
  660. #endif
  661. /* get memory usage */
  662. #if RT_DEBUG_SLAB
  663. {
  664. rt_uint32_t addr = ((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  665. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  666. ("free a memory 0x%x and align to 0x%x, kup index %d\n",
  667. (rt_uint32_t)ptr,
  668. (rt_uint32_t)addr,
  669. ((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS));
  670. }
  671. #endif
  672. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  673. /* release large allocation */
  674. if (kup->type == PAGE_TYPE_LARGE)
  675. {
  676. rt_uint32_t size;
  677. /* lock heap */
  678. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  679. /* clear page counter */
  680. size = kup->size;
  681. kup->size = 0;
  682. #ifdef RT_MEM_STATS
  683. used_mem -= size * RT_MM_PAGE_SIZE;
  684. #endif
  685. rt_sem_release(&heap_sem);
  686. RT_DEBUG_LOG(RT_DEBUG_SLAB,
  687. ("free large memory block 0x%x, page count %d\n", (rt_uint32_t)ptr, size));
  688. /* free this page */
  689. rt_page_free(ptr, size);
  690. return;
  691. }
  692. /* lock heap */
  693. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  694. /* zone case. get out zone. */
  695. z = (slab_zone *)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE);
  696. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  697. chunk = (slab_chunk *)ptr;
  698. chunk->c_next = z->z_freechunk;
  699. z->z_freechunk = chunk;
  700. #ifdef RT_MEM_STATS
  701. used_mem -= z->z_chunksize;
  702. #endif
  703. /*
  704. * Bump the number of free chunks. If it becomes non-zero the zone
  705. * must be added back onto the appropriate list.
  706. */
  707. if (z->z_nfree++ == 0)
  708. {
  709. z->z_next = zone_array[z->z_zoneindex];
  710. zone_array[z->z_zoneindex] = z;
  711. }
  712. /*
  713. * If the zone becomes totally free, and there are other zones we
  714. * can allocate from, move this zone to the FreeZones list. Since
  715. * this code can be called from an IPI callback, do *NOT* try to mess
  716. * with kernel_map here. Hysteresis will be performed at malloc() time.
  717. */
  718. if (z->z_nfree == z->z_nmax && (z->z_next || zone_array[z->z_zoneindex] != z))
  719. {
  720. slab_zone **pz;
  721. RT_DEBUG_LOG(RT_DEBUG_SLAB, ("free zone 0x%x\n", (rt_uint32_t)z, z->z_zoneindex));
  722. /* remove zone from zone array list */
  723. for (pz = &zone_array[z->z_zoneindex]; z != *pz; pz = &(*pz)->z_next)
  724. ;
  725. *pz = z->z_next;
  726. /* reset zone */
  727. z->z_magic = -1;
  728. /* insert to free zone list */
  729. z->z_next = zone_free;
  730. zone_free = z;
  731. ++ zone_free_cnt;
  732. /* release zone to page allocator */
  733. if (zone_free_cnt > ZONE_RELEASE_THRESH)
  734. {
  735. register rt_base_t i;
  736. z = zone_free;
  737. zone_free = z->z_next;
  738. -- zone_free_cnt;
  739. /* set message usage */
  740. for (i = 0, kup = btokup(z); i < zone_page_cnt; i ++)
  741. {
  742. kup->type = PAGE_TYPE_FREE;
  743. kup->size = 0;
  744. kup ++;
  745. }
  746. /* unlock heap */
  747. rt_sem_release(&heap_sem);
  748. /* release pages */
  749. rt_page_free(z, zone_size / RT_MM_PAGE_SIZE);
  750. return;
  751. }
  752. }
  753. /* unlock heap */
  754. rt_sem_release(&heap_sem);
  755. }
  756. #ifdef RT_MEM_STATS
  757. void rt_memory_info(rt_uint32_t *total, rt_uint32_t *used, rt_uint32_t *max_used)
  758. {
  759. if (total != RT_NULL)
  760. *total = heap_end - heap_start;
  761. if (used != RT_NULL)
  762. *used = used_mem;
  763. if (max_used != RT_NULL)
  764. *max_used = max_mem;
  765. }
  766. #ifdef RT_USING_FINSH
  767. #include <finsh.h>
  768. void list_mem(void)
  769. {
  770. rt_kprintf("total memory: %d\n", heap_end - heap_start);
  771. rt_kprintf("used memory : %d\n", used_mem);
  772. rt_kprintf("maximum allocated memory: %d\n", max_mem);
  773. }
  774. FINSH_FUNCTION_EXPORT(list_mem, list memory usage information)
  775. #endif
  776. #endif
  777. /*@}*/
  778. #endif