module.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. /*
  2. * File : module.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006 - 2010, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2010-01-09 Bernard first version
  13. * 2010-04-09 yi.qiu implement based on first version
  14. * 2010-10-23 yi.qiu implement module memory allocator
  15. */
  16. #include <rtthread.h>
  17. #include <rtm.h>
  18. #include "string.h"
  19. #include "kservice.h"
  20. /* #define RT_MODULE_DEBUG */
  21. #ifdef RT_USING_MODULE
  22. #include "module.h"
  23. #define elf_module ((Elf32_Ehdr *)module_ptr)
  24. #define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff))
  25. #define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff))
  26. #define IS_PROG(s) (s.sh_type == SHT_PROGBITS)
  27. #define IS_NOPROG(s) (s.sh_type == SHT_NOBITS)
  28. #define IS_REL(s) (s.sh_type == SHT_REL)
  29. #define IS_RELA(s) (s.sh_type == SHT_RELA)
  30. #define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC)
  31. #define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR))
  32. #define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE))
  33. /* module memory allocator */
  34. struct rt_module_page
  35. {
  36. rt_uint8_t *ptr; /* address of memory block */
  37. rt_size_t npage; /* number of pages */
  38. rt_list_t list;
  39. };
  40. static struct rt_module_page *rt_module_page_list;
  41. /* module memory allocator */
  42. struct rt_mem_head
  43. {
  44. rt_size_t size; /* size of memory block */
  45. struct rt_mem_head *next; /* next valid memory block */
  46. };
  47. extern void *rt_malloc_page(rt_size_t npages);
  48. extern void rt_free_page(void *page_ptr, rt_size_t npages);
  49. static rt_module_t rt_current_module = RT_NULL;
  50. rt_list_t rt_module_symbol_list;
  51. struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL, *_rt_module_symtab_end = RT_NULL;
  52. /**
  53. * @ingroup SystemInit
  54. *
  55. * This function will initialize system module
  56. *
  57. */
  58. void rt_system_module_init(void)
  59. {
  60. extern int __rtmsymtab_start;
  61. extern int __rtmsymtab_end;
  62. #ifdef __GNUC__
  63. _rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start;
  64. _rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end;
  65. #endif
  66. rt_list_init(&rt_module_symbol_list);
  67. /* init current module */
  68. rt_current_module = RT_NULL;
  69. }
  70. static rt_uint32_t rt_module_symbol_find(const rt_uint8_t* sym_str)
  71. {
  72. /* find in kernel symbol table */
  73. struct rt_module_symtab* index;
  74. for (index = _rt_module_symtab_begin; index != _rt_module_symtab_end; index ++)
  75. {
  76. if (rt_strcmp(index->name, (const char*)sym_str) == 0)
  77. return index->addr;
  78. }
  79. return 0;
  80. }
  81. /**
  82. * This function will return self module object
  83. *
  84. * @return the self module object
  85. *
  86. */
  87. rt_module_t rt_module_self (void)
  88. {
  89. /* return current module */
  90. return rt_current_module;
  91. }
  92. /**
  93. * This function will set current module object
  94. *
  95. * @return RT_EOK
  96. */
  97. rt_err_t rt_module_set (rt_module_t module)
  98. {
  99. /* set current module */
  100. rt_current_module = module;
  101. return RT_EOK;
  102. }
  103. static int rt_module_arm_relocate(struct rt_module* module, Elf32_Rel *rel, Elf32_Addr sym_val)
  104. {
  105. Elf32_Addr *where, tmp;
  106. Elf32_Sword addend;
  107. where = (Elf32_Addr *)((rt_uint8_t*)module->module_space + rel->r_offset);
  108. switch (ELF32_R_TYPE(rel->r_info))
  109. {
  110. case R_ARM_NONE:
  111. break;
  112. case R_ARM_ABS32:
  113. *where += (Elf32_Addr)sym_val;
  114. #ifdef RT_MODULE_DEBUG
  115. rt_kprintf("R_ARM_ABS32: %x -> %x\n", where, *where);
  116. #endif
  117. break;
  118. case R_ARM_PC24:
  119. case R_ARM_PLT32:
  120. case R_ARM_CALL:
  121. case R_ARM_JUMP24:
  122. addend = *where & 0x00ffffff;
  123. if (addend & 0x00800000)
  124. addend |= 0xff000000;
  125. tmp = sym_val - (Elf32_Addr)where + (addend << 2);
  126. tmp >>= 2;
  127. *where = (*where & 0xff000000) | (tmp & 0x00ffffff);
  128. #ifdef RT_MODULE_DEBUG
  129. rt_kprintf("R_ARM_PC24: %x -> %x\n", where, *where);
  130. #endif
  131. break;
  132. case R_ARM_V4BX:
  133. *where &= 0xf000000f;
  134. *where |= 0x01a0f000;
  135. break;
  136. case R_ARM_GLOB_DAT:
  137. case R_ARM_JUMP_SLOT:
  138. *where = (Elf32_Addr)sym_val;
  139. #ifdef RT_MODULE_DEBUG
  140. rt_kprintf("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val);
  141. #endif
  142. break;
  143. case R_ARM_RELATIVE:
  144. *where += (Elf32_Addr)sym_val;
  145. #ifdef RT_MODULE_DEBUG
  146. rt_kprintf("R_ARM_RELATIVE: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val);
  147. #endif
  148. break;
  149. default:
  150. return -1;
  151. }
  152. return 0;
  153. }
  154. static void rt_module_init_object_container(struct rt_module* module)
  155. {
  156. RT_ASSERT(module != RT_NULL);
  157. /* initialize object container - thread */
  158. rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list));
  159. module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread);
  160. module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread;
  161. #ifdef RT_USING_SEMAPHORE
  162. /* initialize object container - semaphore */
  163. rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list));
  164. module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore);
  165. module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore;
  166. #endif
  167. #ifdef RT_USING_MUTEX
  168. /* initialize object container - mutex */
  169. rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list));
  170. module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex);
  171. module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex;
  172. #endif
  173. #ifdef RT_USING_EVENT
  174. /* initialize object container - event */
  175. rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list));
  176. module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event);
  177. module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event;
  178. #endif
  179. #ifdef RT_USING_MAILBOX
  180. /* initialize object container - mailbox */
  181. rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list));
  182. module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox);
  183. module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox;
  184. #endif
  185. #ifdef RT_USING_MESSAGEQUEUE
  186. /* initialize object container - message queue */
  187. rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list));
  188. module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue);
  189. module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue;
  190. #endif
  191. #ifdef RT_USING_MEMPOOL
  192. /* initialize object container - memory pool */
  193. rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list));
  194. module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool);
  195. module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool;
  196. #endif
  197. #ifdef RT_USING_DEVICE
  198. /* initialize object container - device */
  199. rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list));
  200. module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device);
  201. module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device;
  202. #endif
  203. /* initialize object container - timer */
  204. rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list));
  205. module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer);
  206. module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer;
  207. }
  208. /**
  209. * This function will load a module from memory and create a thread for it
  210. *
  211. * @param name the name of module, which shall be unique
  212. * @param module_ptr the memory address of module image
  213. *
  214. * @return the module object
  215. *
  216. */
  217. rt_module_t rt_module_load(const rt_uint8_t* name, void* module_ptr)
  218. {
  219. rt_uint8_t *ptr = RT_NULL;
  220. rt_module_t module = RT_NULL;
  221. rt_bool_t linked = RT_FALSE;
  222. rt_uint32_t index, module_size = 0;
  223. rt_kprintf("rt_module_load: %s\n", name);
  224. /* check ELF header */
  225. if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) == 0)
  226. {
  227. /* rtmlinke finished */
  228. linked = RT_TRUE;
  229. }
  230. else if (rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0)
  231. {
  232. rt_kprintf(" module magic error\n");
  233. return RT_NULL;
  234. }
  235. /* check ELF class */
  236. if(elf_module->e_ident[EI_CLASS] != ELFCLASS32)
  237. {
  238. rt_kprintf(" module class error\n");
  239. return RT_NULL;
  240. }
  241. /* get the ELF image size */
  242. for (index = 0; index < elf_module->e_phnum; index++)
  243. {
  244. if(phdr[index].p_type == PT_LOAD)
  245. module_size += phdr[index].p_memsz;
  246. }
  247. if (module_size == 0)
  248. {
  249. rt_kprintf(" module size error\n");
  250. return module;
  251. }
  252. /* allocate module */
  253. module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char*)name);
  254. if (!module) return RT_NULL;
  255. /* allocate module space */
  256. module->module_space = rt_malloc(module_size);
  257. if (module->module_space == RT_NULL)
  258. {
  259. rt_object_delete(&(module->parent));
  260. return RT_NULL;
  261. }
  262. /* zero all space */
  263. ptr = module->module_space;
  264. rt_memset(ptr, 0, module_size);
  265. for (index = 0; index < elf_module->e_phnum; index++)
  266. {
  267. if(phdr[index].p_type == PT_LOAD)
  268. {
  269. rt_memcpy(ptr, (rt_uint8_t*)elf_module + phdr[index].p_offset, phdr[index].p_filesz);
  270. ptr += phdr[index].p_memsz;
  271. }
  272. }
  273. /* set module entry */
  274. module->module_entry = module->module_space + elf_module->e_entry;
  275. /* handle relocation section */
  276. for (index = 0; index < elf_module->e_shnum; index ++)
  277. {
  278. if (IS_REL(shdr[index]))
  279. {
  280. rt_uint32_t i, nr_reloc;
  281. Elf32_Sym *symtab;
  282. Elf32_Rel *rel;
  283. rt_uint8_t *strtab;
  284. static rt_bool_t unsolved = RT_FALSE;
  285. /* get relocate item */
  286. rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset);
  287. /* locate .rel.plt and .rel.dyn section */
  288. symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset);
  289. strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
  290. nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel));
  291. /* relocate every items */
  292. for (i = 0; i < nr_reloc; i ++)
  293. {
  294. Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
  295. #ifdef RT_MODULE_DEBUG
  296. rt_kprintf("relocate symbol %s shndx %d\n", strtab + sym->st_name, sym->st_shndx);
  297. #endif
  298. if((sym->st_shndx != SHT_NULL) || (ELF_ST_BIND(sym->st_info) == STB_LOCAL))
  299. rt_module_arm_relocate(module, rel, (Elf32_Addr)(module->module_space + sym->st_value));
  300. else if(!linked)
  301. {
  302. Elf32_Addr addr;
  303. #ifdef RT_MODULE_DEBUG
  304. rt_kprintf("unresolved relocate symbol: %s\n", strtab + sym->st_name);
  305. #endif
  306. /* need to resolve symbol in kernel symbol table */
  307. addr = rt_module_symbol_find(strtab + sym->st_name);
  308. if (addr == 0)
  309. {
  310. rt_kprintf("can't find %s in kernel symbol table\n", strtab + sym->st_name);
  311. unsolved = RT_TRUE;
  312. }
  313. else rt_module_arm_relocate(module, rel, addr);
  314. }
  315. rel ++;
  316. }
  317. if(unsolved)
  318. {
  319. rt_object_delete(&(module->parent));
  320. rt_free(module);
  321. return RT_NULL;
  322. }
  323. }
  324. }
  325. /* construct module symbol table */
  326. for (index = 0; index < elf_module->e_shnum; index ++)
  327. {
  328. /* find .dynsym section */
  329. rt_uint8_t* shstrab = (rt_uint8_t*) module_ptr + shdr[elf_module->e_shstrndx].sh_offset;
  330. if (rt_strcmp(shstrab + shdr[index].sh_name, ELF_DYNSYM) == 0) break;
  331. }
  332. /* found .dynsyn section */
  333. if(index != elf_module->e_shnum)
  334. {
  335. int i, count = 0;
  336. Elf32_Sym *symtab = RT_NULL;
  337. rt_uint8_t *strtab = RT_NULL;
  338. symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset);
  339. strtab = (rt_uint8_t*) module_ptr + shdr[shdr[index].sh_link].sh_offset;
  340. for(i=0; i<shdr[index].sh_size/sizeof(Elf32_Sym); i++)
  341. {
  342. if((ELF_ST_BIND(symtab[i].st_info) == STB_GLOBAL) && (ELF_ST_TYPE(symtab[i].st_info) == STT_FUNC))
  343. count++;
  344. }
  345. module->symtab = (struct rt_module_symtab*)rt_malloc(count * sizeof(struct rt_module_symtab));
  346. module->nsym = count;
  347. for(i=0, count=0; i<shdr[index].sh_size/sizeof(Elf32_Sym); i++)
  348. {
  349. if((ELF_ST_BIND(symtab[i].st_info) == STB_GLOBAL) && (ELF_ST_TYPE(symtab[i].st_info) == STT_FUNC))
  350. {
  351. rt_size_t length = rt_strlen(strtab + symtab[i].st_name) + 1;
  352. module->symtab[count].addr = module->module_space + symtab[i].st_value;
  353. module->symtab[count].name = rt_malloc(length);
  354. rt_memset(module->symtab[count].name, 0, length);
  355. rt_memcpy(module->symtab[count].name, strtab + symtab[i].st_name, length);
  356. count++;
  357. }
  358. }
  359. }
  360. #if 0
  361. /* construct module symbol table */
  362. for (index = 0; index < elf_module->e_shnum; index ++)
  363. {
  364. rt_uint8_t* shstrab = (rt_uint8_t*) module_ptr + shdr[elf_module->e_shstrndx].sh_offset;
  365. if (rt_strcmp(shstrab + shdr[index].sh_name, ELF_RTMSYMTAB) == 0)
  366. {
  367. module->symtab = (struct rt_module_symtab *)(module->module_space + shdr[index].sh_addr);
  368. module->nsym = shdr[index].sh_size / sizeof(struct rt_module_symtab);
  369. }
  370. }
  371. #endif
  372. /* init module object container */
  373. rt_module_init_object_container(module);
  374. /* increase module reference count */
  375. module->nref++;
  376. if(elf_module->e_entry != 0)
  377. {
  378. /* init module page list */
  379. rt_list_init(&module->page_list);
  380. /* init module memory allocator */
  381. module->mem_list = RT_NULL;
  382. /* create mpool for page node */
  383. module->mpool = rt_mp_create(name, 1024, sizeof(struct rt_module_page));
  384. /* create module thread */
  385. module->stack_size = 2048;
  386. module->thread_priority = 90;
  387. module->module_thread = rt_thread_create(name,
  388. module->module_entry, RT_NULL,
  389. module->stack_size,
  390. module->thread_priority, 10);
  391. module->module_thread->module_id = (void*)module;
  392. /* startup module thread */
  393. rt_thread_startup(module->module_thread);
  394. }
  395. else
  396. {
  397. /* without entry point */
  398. module->parent.flag |= RT_MODULE_FLAG_WITHOUTENTRY;
  399. }
  400. return module;
  401. }
  402. #ifdef RT_USING_DFS
  403. #include <dfs_posix.h>
  404. /**
  405. * This function will load a module from a file
  406. *
  407. * @param filename the file name of application module
  408. *
  409. * @return the module object
  410. *
  411. */
  412. rt_module_t rt_module_open(const char* filename)
  413. {
  414. int fd, length;
  415. struct rt_module* module;
  416. struct stat s;
  417. char *buffer, *offset_ptr;;
  418. if (stat(filename, &s) !=0)
  419. {
  420. rt_kprintf("access file failed\n");
  421. return RT_NULL;
  422. }
  423. buffer = (char *)rt_malloc(s.st_size);
  424. if (buffer == RT_NULL)
  425. {
  426. rt_kprintf("out of memory\n");
  427. return RT_NULL;
  428. }
  429. offset_ptr = buffer;
  430. fd = open(filename, O_RDONLY, 0);
  431. if (fd < 0)
  432. {
  433. rt_kprintf("open file failed\n");
  434. rt_free(buffer);
  435. return RT_NULL;
  436. }
  437. do
  438. {
  439. length = read(fd, offset_ptr, 4096);
  440. if (length > 0)
  441. {
  442. offset_ptr += length;
  443. }
  444. }while (length > 0);
  445. /* close fd */
  446. close(fd);
  447. if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size)
  448. {
  449. rt_kprintf("check: read file failed\n");
  450. rt_free(buffer);
  451. return RT_NULL;
  452. }
  453. module = rt_module_load(filename, (void *)buffer);
  454. rt_free(buffer);
  455. return module;
  456. }
  457. #if defined(RT_USING_FINSH)
  458. #include <finsh.h>
  459. FINSH_FUNCTION_EXPORT_ALIAS(rt_module_open, exec, exec module from file);
  460. #endif
  461. #endif
  462. /**
  463. * This function will unload a module from memory and release resources
  464. *
  465. * @param module the module to be unloaded
  466. *
  467. * @return the operation status, RT_EOK on OK; -RT_ERROR on error
  468. *
  469. */
  470. rt_err_t rt_module_unload(rt_module_t module)
  471. {
  472. int i;
  473. struct rt_object* object;
  474. struct rt_list_node *list;
  475. rt_kprintf("rt_module_unload: %s\n", module->parent.name);
  476. /* check parameter */
  477. RT_ASSERT(module != RT_NULL);
  478. /* module has entry point */
  479. if(!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY))
  480. {
  481. /* suspend module main thread */
  482. if(module->module_thread != RT_NULL)
  483. {
  484. if (module->module_thread->stat == RT_THREAD_READY)
  485. rt_thread_suspend(module->module_thread);
  486. }
  487. /* delete threads */
  488. list = &module->module_object[RT_Object_Class_Thread].object_list;
  489. while(list->next != list)
  490. {
  491. object = rt_list_entry(list->next, struct rt_object, list);
  492. if (rt_object_is_systemobject(object) == RT_EOK)
  493. {
  494. /* detach static object */
  495. rt_thread_detach((rt_thread_t)object);
  496. }
  497. else
  498. {
  499. /* delete dynamic object */
  500. rt_thread_delete((rt_thread_t)object);
  501. }
  502. }
  503. #ifdef RT_USING_SEMAPHORE
  504. /* delete semaphores */
  505. list = &module->module_object[RT_Object_Class_Thread].object_list;
  506. while(list->next != list)
  507. {
  508. object = rt_list_entry(list->next, struct rt_object, list);
  509. if (rt_object_is_systemobject(object) == RT_EOK)
  510. {
  511. /* detach static object */
  512. rt_sem_detach((rt_sem_t)object);
  513. }
  514. else
  515. {
  516. /* delete dynamic object */
  517. rt_sem_delete((rt_sem_t)object);
  518. }
  519. }
  520. #endif
  521. #ifdef RT_USING_MUTEX
  522. /* delete mutexs*/
  523. list = &module->module_object[RT_Object_Class_Mutex].object_list;
  524. while(list->next != list)
  525. {
  526. object = rt_list_entry(list->next, struct rt_object, list);
  527. if (rt_object_is_systemobject(object) == RT_EOK)
  528. {
  529. /* detach static object */
  530. rt_mutex_detach((rt_mutex_t)object);
  531. }
  532. else
  533. {
  534. /* delete dynamic object */
  535. rt_mutex_delete((rt_mutex_t)object);
  536. }
  537. }
  538. #endif
  539. #ifdef RT_USING_EVENT
  540. /* delete mailboxs */
  541. list = &module->module_object[RT_Object_Class_Event].object_list;
  542. while(list->next != list)
  543. {
  544. object = rt_list_entry(list->next, struct rt_object, list);
  545. if (rt_object_is_systemobject(object) == RT_EOK)
  546. {
  547. /* detach static object */
  548. rt_event_detach((rt_event_t)object);
  549. }
  550. else
  551. {
  552. /* delete dynamic object */
  553. rt_event_delete((rt_event_t)object);
  554. }
  555. }
  556. #endif
  557. #ifdef RT_USING_MAILBOX
  558. /* delete mailboxs */
  559. list = &module->module_object[RT_Object_Class_MailBox].object_list;
  560. while(list->next != list)
  561. {
  562. object = rt_list_entry(list->next, struct rt_object, list);
  563. if (rt_object_is_systemobject(object) == RT_EOK)
  564. {
  565. /* detach static object */
  566. rt_mb_detach((rt_mailbox_t)object);
  567. }
  568. else
  569. {
  570. /* delete dynamic object */
  571. rt_mb_delete((rt_mailbox_t)object);
  572. }
  573. }
  574. #endif
  575. #ifdef RT_USING_MESSAGEQUEUE
  576. /* delete msgqueues */
  577. list = &module->module_object[RT_Object_Class_MessageQueue].object_list;
  578. while(list->next != list)
  579. {
  580. object = rt_list_entry(list->next, struct rt_object, list);
  581. if (rt_object_is_systemobject(object) == RT_EOK)
  582. {
  583. /* detach static object */
  584. rt_mq_detach((rt_mq_t)object);
  585. }
  586. else
  587. {
  588. /* delete dynamic object */
  589. rt_mq_delete((rt_mq_t)object);
  590. }
  591. }
  592. #endif
  593. #ifdef RT_USING_MEMPOOL
  594. /* delete mempools */
  595. list = &module->module_object[RT_Object_Class_MemPool].object_list;
  596. while(list->next != list)
  597. {
  598. object = rt_list_entry(list->next, struct rt_object, list);
  599. if (rt_object_is_systemobject(object) == RT_EOK)
  600. {
  601. /* detach static object */
  602. rt_mp_detach((rt_mp_t)object);
  603. }
  604. else
  605. {
  606. /* delete dynamic object */
  607. rt_mp_delete((rt_mp_t)object);
  608. }
  609. }
  610. #endif
  611. #ifdef RT_USING_DEVICE
  612. /* delete devices */
  613. list = &module->module_object[RT_Object_Class_Device].object_list;
  614. while(list->next != list)
  615. {
  616. object = rt_list_entry(list->next, struct rt_object, list);
  617. rt_device_unregister((rt_device_t)object);
  618. }
  619. #endif
  620. /* delete timers */
  621. list = &module->module_object[RT_Object_Class_Timer].object_list;
  622. while(list->next != list)
  623. {
  624. object = rt_list_entry(list->next, struct rt_object, list);
  625. if (rt_object_is_systemobject(object) == RT_EOK)
  626. {
  627. /* detach static object */
  628. rt_timer_detach((rt_timer_t)object);
  629. }
  630. else
  631. {
  632. /* delete dynamic object */
  633. rt_timer_delete((rt_timer_t)object);
  634. }
  635. }
  636. /* free module pages */
  637. list = &module->page_list;
  638. while(list->next != list)
  639. {
  640. struct rt_module_page* page;
  641. /* free page */
  642. page = rt_list_entry(list->next, struct rt_module_page, list);
  643. rt_free_page(page->ptr, page->npage);
  644. rt_list_remove(list->next);
  645. }
  646. /* delete mpool */
  647. if(module->mpool) rt_mp_delete(module->mpool);
  648. }
  649. /* release module space memory */
  650. rt_free(module->module_space);
  651. /* release module symbol table */
  652. for(i=0; i<module->nsym; i++) rt_free(module->symtab[i].name);
  653. if(module->symtab != RT_NULL) rt_free(module->symtab);
  654. /* delete module object */
  655. rt_object_delete((rt_object_t)module);
  656. return RT_EOK;
  657. }
  658. /**
  659. * This function will find the specified module.
  660. *
  661. * @param name the name of module finding
  662. *
  663. * @return the module
  664. */
  665. rt_module_t rt_module_find(const char* name)
  666. {
  667. struct rt_object_information *information;
  668. struct rt_object* object;
  669. struct rt_list_node* node;
  670. extern struct rt_object_information rt_object_container[];
  671. /* enter critical */
  672. rt_enter_critical();
  673. /* try to find device object */
  674. information = &rt_object_container[RT_Object_Class_Module];
  675. for (node = information->object_list.next; node != &(information->object_list); node = node->next)
  676. {
  677. object = rt_list_entry(node, struct rt_object, list);
  678. if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0)
  679. {
  680. /* leave critical */
  681. rt_exit_critical();
  682. return (rt_module_t)object;
  683. }
  684. }
  685. /* leave critical */
  686. rt_exit_critical();
  687. /* not found */
  688. return RT_NULL;
  689. }
  690. static struct rt_mem_head *morepage(rt_size_t nu)
  691. {
  692. rt_uint8_t *cp;
  693. rt_uint32_t npage;
  694. struct rt_mem_head *up;
  695. struct rt_module_page *node;
  696. RT_ASSERT (nu != 0);
  697. /* allocate pages from system heap */
  698. npage = (nu * sizeof(struct rt_mem_head) + RT_MM_PAGE_SIZE - 1)/RT_MM_PAGE_SIZE;
  699. cp = rt_malloc_page(npage);
  700. if(!cp) return RT_NULL;
  701. /* allocate page list node from mpool */
  702. node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER);
  703. node->ptr = cp;
  704. node->npage = npage;
  705. /* insert page list node to moudle's page list */
  706. rt_list_insert_after (&rt_current_module->page_list, &node->list);
  707. up = (struct rt_mem_head *) cp;
  708. up->size = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head);
  709. rt_module_free(rt_current_module, (void *)(up+1));
  710. return up;
  711. }
  712. /*
  713. rt_module_malloc - allocate memory block in free list
  714. */
  715. void *rt_module_malloc(rt_size_t size)
  716. {
  717. struct rt_mem_head *b, *n;
  718. struct rt_mem_head **prev;
  719. rt_size_t nunits;
  720. nunits = (size + sizeof(struct rt_mem_head) -1)/sizeof(struct rt_mem_head) + 1;
  721. RT_ASSERT(size != 0);
  722. RT_ASSERT(nunits != 0);
  723. prev = (struct rt_mem_head **)&rt_current_module->mem_list;
  724. /* if size can be divided by page, allocate page directly */
  725. if(size % RT_MM_PAGE_SIZE == 0)
  726. {
  727. rt_uint8_t *cp;
  728. struct rt_module_page *node;
  729. rt_uint32_t npage = size / RT_MM_PAGE_SIZE;
  730. /* allocate pages from system heap */
  731. cp = rt_malloc_page(npage);
  732. if(!cp) return RT_NULL;
  733. /* allocate page list node from mpool */
  734. node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER);
  735. node->ptr = cp;
  736. node->npage = npage;
  737. /* insert page list node to moudle's page list */
  738. rt_list_insert_after (&rt_current_module->page_list, &node->list);
  739. }
  740. while(RT_TRUE)
  741. {
  742. b = *prev;
  743. if(!b)
  744. {
  745. if ((b = morepage(nunits)) == RT_NULL) return RT_NULL;
  746. else return rt_module_malloc(size); /* To be improved */
  747. }
  748. if (b->size > nunits)
  749. {
  750. /* split memory */
  751. n = b + nunits;
  752. n->next = b->next;
  753. n->size = b->size - nunits;
  754. b->size = nunits;
  755. *prev = n;
  756. break;
  757. }
  758. if (b->size == nunits)
  759. {
  760. /* this node fit, remove this node */
  761. *prev = b->next;
  762. break;
  763. }
  764. prev = &(b->next);
  765. }
  766. return (void *)(b + 1);
  767. }
  768. /*
  769. rt_module_free - insert memory block in free list
  770. */
  771. void rt_module_free(rt_module_t module, void *addr)
  772. {
  773. struct rt_mem_head *b, *n;
  774. struct rt_mem_head **prev;
  775. RT_ASSERT(addr);
  776. RT_ASSERT((((rt_uint32_t)addr) & (sizeof(struct rt_mem_head) -1)) == 0);
  777. n = (struct rt_mem_head *)addr - 1;
  778. prev = (struct rt_mem_head **)&module->mem_list;
  779. while ((b = *prev) != RT_NULL)
  780. {
  781. RT_ASSERT(b->size > 0);
  782. RT_ASSERT(b > n || b + b->size <= n);
  783. if (b + b->size == n)
  784. {
  785. if (b + (b->size += n->size) == b->next)
  786. {
  787. b->size += b->next->size;
  788. b->next = b->next->next;
  789. }
  790. return;
  791. }
  792. if (b == n + n->size)
  793. {
  794. n->size = b->size + n->size;
  795. n->next = b->next;
  796. *prev = n;
  797. return;
  798. }
  799. if (b > n + n->size) break;
  800. prev = &(b->next);
  801. }
  802. n->next = b;
  803. *prev = n;
  804. /* free page, TODO */
  805. }
  806. /*
  807. rt_module_realloc - realloc memory block in free list
  808. */
  809. void *rt_module_realloc(void *ptr, rt_size_t size)
  810. {
  811. struct rt_mem_head *b, *p, *prev, *tmpp;
  812. rt_size_t nunits;
  813. if (!ptr) return rt_module_malloc(size);
  814. if (size == 0)
  815. {
  816. rt_module_free(rt_current_module, ptr);
  817. return RT_NULL;
  818. }
  819. nunits = (size + sizeof(struct rt_mem_head) - 1) / sizeof(struct rt_mem_head) + 1;
  820. b = (struct rt_mem_head *)ptr - 1;
  821. if (nunits <= b->size)
  822. {
  823. /* new size is smaller or equal then before */
  824. if (nunits == b->size) return ptr;
  825. else
  826. {
  827. p = b + nunits;
  828. p->size = b->size - nunits;
  829. b->size = nunits;
  830. rt_module_free(rt_current_module, (void *)(p + 1));
  831. return (void *)(b + 1);
  832. }
  833. }
  834. else
  835. {
  836. /* more space then required */
  837. prev = (struct rt_mem_head *)rt_current_module->mem_list;
  838. for (p = prev->next; p != (b->size + b) && p != RT_NULL; prev = p, p = p->next) break;
  839. /* available block after ap in freelist */
  840. if (p != RT_NULL && (p->size >= (nunits - (b->size))) && p == (b + b->size))
  841. {
  842. /* perfect match */
  843. if (p->size == (nunits - (b->size)))
  844. {
  845. b->size = nunits;
  846. prev->next = p->next;
  847. }
  848. else /* more space then required, split block*/
  849. {
  850. /* pointer to old header */
  851. tmpp = p;
  852. p = b + nunits;
  853. /* restoring old pointer */
  854. p->next = tmpp->next;
  855. /* new size for p */
  856. p->size = tmpp->size + b->size - nunits;
  857. b->size = nunits;
  858. prev->next = p;
  859. }
  860. rt_current_module->mem_list = (void *)prev;
  861. return (void *) (b + 1);
  862. }
  863. else /* allocate new memory and copy old data */
  864. {
  865. if ((p = rt_module_malloc(size)) == RT_NULL) return RT_NULL;
  866. rt_memmove(p, (b+1), ((b->size) * sizeof(struct rt_mem_head)));
  867. rt_module_free(rt_current_module, (void *)(b + 1));
  868. return (void *) (p);
  869. }
  870. }
  871. }
  872. #endif