trap.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2013-07-20 Bernard first version
  9. */
  10. #include <rtthread.h>
  11. #include <rthw.h>
  12. #include <board.h>
  13. #include <armv8.h>
  14. #include "interrupt.h"
  15. #include "mm_fault.h"
  16. #include <backtrace.h>
  17. void rt_unwind(struct rt_hw_exp_stack *regs, int pc_adj)
  18. {
  19. }
  20. #ifdef RT_USING_FINSH
  21. extern long list_thread(void);
  22. #endif
  23. #ifdef RT_USING_LWP
  24. #include <lwp.h>
  25. #include <lwp_arch.h>
  26. #ifdef LWP_USING_CORE_DUMP
  27. #include <lwp_core_dump.h>
  28. #endif
  29. void sys_exit(int value);
  30. void check_user_fault(struct rt_hw_exp_stack *regs, uint32_t pc_adj, char *info)
  31. {
  32. uint32_t mode = regs->cpsr;
  33. if ((mode & 0x1f) == 0x00)
  34. {
  35. rt_kprintf("%s! pc = 0x%08x\n", info, regs->pc - pc_adj);
  36. #ifdef LWP_USING_CORE_DUMP
  37. lwp_core_dump(regs, pc_adj);
  38. #endif
  39. sys_exit(-1);
  40. }
  41. }
  42. int _get_type(unsigned long esr)
  43. {
  44. int ret;
  45. int fsc = esr & 0x3f;
  46. switch (fsc)
  47. {
  48. case 0x4:
  49. case 0x5:
  50. case 0x6:
  51. case 0x7:
  52. ret = MM_FAULT_TYPE_PAGE_FAULT;
  53. break;
  54. case 0x9:
  55. case 0xa:
  56. case 0xb:
  57. ret = MM_FAULT_TYPE_ACCESS_FAULT;
  58. break;
  59. default:
  60. ret = MM_FAULT_TYPE_GENERIC;
  61. }
  62. return ret;
  63. }
  64. int check_user_stack(unsigned long esr, struct rt_hw_exp_stack *regs)
  65. {
  66. unsigned char ec;
  67. void *dfar;
  68. int ret = 0;
  69. ec = (unsigned char)((esr >> 26) & 0x3fU);
  70. enum rt_mm_fault_op fault_op;
  71. enum rt_mm_fault_type fault_type;
  72. switch (ec)
  73. {
  74. case 0x20:
  75. fault_op = MM_FAULT_OP_EXECUTE;
  76. fault_type = _get_type(esr);
  77. break;
  78. case 0x21:
  79. case 0x24:
  80. fault_op = MM_FAULT_OP_WRITE;
  81. fault_type = _get_type(esr);
  82. break;
  83. default:
  84. fault_op = 0;
  85. break;
  86. }
  87. if (fault_op)
  88. {
  89. asm volatile("mrs %0, far_el1":"=r"(dfar));
  90. struct rt_mm_fault_msg msg = {
  91. .fault_op = fault_op,
  92. .fault_type = fault_type,
  93. .vaddr = dfar,
  94. };
  95. if (rt_mm_fault_try_fix(&msg))
  96. {
  97. ret = 1;
  98. }
  99. }
  100. return ret;
  101. }
  102. #endif
  103. /**
  104. * this function will show registers of CPU
  105. *
  106. * @param regs the registers point
  107. */
  108. void rt_hw_show_register(struct rt_hw_exp_stack *regs)
  109. {
  110. rt_kprintf("Execption:\n");
  111. rt_kprintf("X00:0x%16.16p X01:0x%16.16p X02:0x%16.16p X03:0x%16.16p\n", (void *)regs->x0, (void *)regs->x1, (void *)regs->x2, (void *)regs->x3);
  112. rt_kprintf("X04:0x%16.16p X05:0x%16.16p X06:0x%16.16p X07:0x%16.16p\n", (void *)regs->x4, (void *)regs->x5, (void *)regs->x6, (void *)regs->x7);
  113. rt_kprintf("X08:0x%16.16p X09:0x%16.16p X10:0x%16.16p X11:0x%16.16p\n", (void *)regs->x8, (void *)regs->x9, (void *)regs->x10, (void *)regs->x11);
  114. rt_kprintf("X12:0x%16.16p X13:0x%16.16p X14:0x%16.16p X15:0x%16.16p\n", (void *)regs->x12, (void *)regs->x13, (void *)regs->x14, (void *)regs->x15);
  115. rt_kprintf("X16:0x%16.16p X17:0x%16.16p X18:0x%16.16p X19:0x%16.16p\n", (void *)regs->x16, (void *)regs->x17, (void *)regs->x18, (void *)regs->x19);
  116. rt_kprintf("X20:0x%16.16p X21:0x%16.16p X22:0x%16.16p X23:0x%16.16p\n", (void *)regs->x20, (void *)regs->x21, (void *)regs->x22, (void *)regs->x23);
  117. rt_kprintf("X24:0x%16.16p X25:0x%16.16p X26:0x%16.16p X27:0x%16.16p\n", (void *)regs->x24, (void *)regs->x25, (void *)regs->x26, (void *)regs->x27);
  118. rt_kprintf("X28:0x%16.16p X29:0x%16.16p X30:0x%16.16p\n", (void *)regs->x28, (void *)regs->x29, (void *)regs->x30);
  119. rt_kprintf("SP_EL0:0x%16.16p\n", (void *)regs->sp_el0);
  120. rt_kprintf("SPSR :0x%16.16p\n", (void *)regs->cpsr);
  121. rt_kprintf("EPC :0x%16.16p\n", (void *)regs->pc);
  122. }
  123. void rt_hw_trap_irq(void)
  124. {
  125. #ifdef SOC_BCM283x
  126. extern rt_uint8_t core_timer_flag;
  127. void *param;
  128. uint32_t irq;
  129. rt_isr_handler_t isr_func;
  130. extern struct rt_irq_desc isr_table[];
  131. uint32_t value = 0;
  132. value = IRQ_PEND_BASIC & 0x3ff;
  133. if(core_timer_flag != 0)
  134. {
  135. uint32_t cpu_id = rt_hw_cpu_id();
  136. uint32_t int_source = CORE_IRQSOURCE(cpu_id);
  137. if (int_source & 0x0f)
  138. {
  139. if (int_source & 0x08)
  140. {
  141. isr_func = isr_table[IRQ_ARM_TIMER].handler;
  142. #ifdef RT_USING_INTERRUPT_INFO
  143. isr_table[IRQ_ARM_TIMER].counter++;
  144. #endif
  145. if (isr_func)
  146. {
  147. param = isr_table[IRQ_ARM_TIMER].param;
  148. isr_func(IRQ_ARM_TIMER, param);
  149. }
  150. }
  151. }
  152. }
  153. /* local interrupt*/
  154. if (value)
  155. {
  156. if (value & (1 << 8))
  157. {
  158. value = IRQ_PEND1;
  159. irq = __rt_ffs(value) - 1;
  160. }
  161. else if (value & (1 << 9))
  162. {
  163. value = IRQ_PEND2;
  164. irq = __rt_ffs(value) + 31;
  165. }
  166. else
  167. {
  168. value &= 0x0f;
  169. irq = __rt_ffs(value) + 63;
  170. }
  171. /* get interrupt service routine */
  172. isr_func = isr_table[irq].handler;
  173. #ifdef RT_USING_INTERRUPT_INFO
  174. isr_table[irq].counter++;
  175. #endif
  176. if (isr_func)
  177. {
  178. /* Interrupt for myself. */
  179. param = isr_table[irq].param;
  180. /* turn to interrupt service routine */
  181. isr_func(irq, param);
  182. }
  183. }
  184. #else
  185. void *param;
  186. int ir, ir_self;
  187. rt_isr_handler_t isr_func;
  188. extern struct rt_irq_desc isr_table[];
  189. ir = rt_hw_interrupt_get_irq();
  190. if (ir == 1023)
  191. {
  192. /* Spurious interrupt */
  193. return;
  194. }
  195. /* bit 10~12 is cpuid, bit 0~9 is interrupt id */
  196. ir_self = ir & 0x3ffUL;
  197. /* get interrupt service routine */
  198. isr_func = isr_table[ir_self].handler;
  199. #ifdef RT_USING_INTERRUPT_INFO
  200. isr_table[ir_self].counter++;
  201. #endif
  202. if (isr_func)
  203. {
  204. /* Interrupt for myself. */
  205. param = isr_table[ir_self].param;
  206. /* turn to interrupt service routine */
  207. isr_func(ir_self, param);
  208. }
  209. /* end of interrupt */
  210. rt_hw_interrupt_ack(ir);
  211. #endif
  212. }
  213. void rt_hw_trap_fiq(void)
  214. {
  215. void *param;
  216. int ir, ir_self;
  217. rt_isr_handler_t isr_func;
  218. extern struct rt_irq_desc isr_table[];
  219. ir = rt_hw_interrupt_get_irq();
  220. /* bit 10~12 is cpuid, bit 0~9 is interrup id */
  221. ir_self = ir & 0x3ffUL;
  222. /* get interrupt service routine */
  223. isr_func = isr_table[ir_self].handler;
  224. param = isr_table[ir_self].param;
  225. /* turn to interrupt service routine */
  226. isr_func(ir_self, param);
  227. /* end of interrupt */
  228. rt_hw_interrupt_ack(ir);
  229. }
  230. void process_exception(unsigned long esr, unsigned long epc);
  231. void SVC_Handler(struct rt_hw_exp_stack *regs);
  232. void rt_hw_trap_exception(struct rt_hw_exp_stack *regs)
  233. {
  234. unsigned long esr;
  235. unsigned char ec;
  236. asm volatile("mrs %0, esr_el1":"=r"(esr));
  237. ec = (unsigned char)((esr >> 26) & 0x3fU);
  238. #ifdef RT_USING_LWP
  239. if (dbg_check_event(regs, esr))
  240. {
  241. return;
  242. }
  243. else
  244. #endif
  245. if (ec == 0x15) /* is 64bit syscall ? */
  246. {
  247. SVC_Handler(regs);
  248. /* never return here */
  249. }
  250. #ifdef RT_USING_LWP
  251. if (check_user_stack(esr, regs))
  252. {
  253. return;
  254. }
  255. #endif
  256. process_exception(esr, regs->pc);
  257. rt_hw_show_register(regs);
  258. rt_kprintf("current: %s\n", rt_thread_self()->name);
  259. #ifdef RT_USING_LWP
  260. check_user_fault(regs, 0, "user fault");
  261. #endif
  262. #ifdef RT_USING_FINSH
  263. list_thread();
  264. #endif
  265. backtrace((unsigned long)regs->pc, (unsigned long)regs->x30, (unsigned long)regs->x29);
  266. rt_hw_cpu_shutdown();
  267. }
  268. void rt_hw_trap_serror(struct rt_hw_exp_stack *regs)
  269. {
  270. rt_kprintf("SError\n");
  271. rt_hw_show_register(regs);
  272. rt_kprintf("current: %s\n", rt_thread_self()->name);
  273. #ifdef RT_USING_FINSH
  274. list_thread();
  275. #endif
  276. rt_hw_cpu_shutdown();
  277. }