slab.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816
  1. /*
  2. * File : slab.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2008 - 2009, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2008-07-12 Bernard the first version
  13. * 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca
  14. */
  15. /*
  16. * KERN_SLABALLOC.C - Kernel SLAB memory allocator
  17. *
  18. * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
  19. *
  20. * This code is derived from software contributed to The DragonFly Project
  21. * by Matthew Dillon <dillon@backplane.com>
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. *
  27. * 1. Redistributions of source code must retain the above copyright
  28. * notice, this list of conditions and the following disclaimer.
  29. * 2. Redistributions in binary form must reproduce the above copyright
  30. * notice, this list of conditions and the following disclaimer in
  31. * the documentation and/or other materials provided with the
  32. * distribution.
  33. * 3. Neither the name of The DragonFly Project nor the names of its
  34. * contributors may be used to endorse or promote products derived
  35. * from this software without specific, prior written permission.
  36. *
  37. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  38. * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  39. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  40. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  41. * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  42. * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
  43. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  44. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
  45. * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  46. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  47. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  48. * SUCH DAMAGE.
  49. *
  50. */
  51. #include <rthw.h>
  52. #include <rtthread.h>
  53. /* #define RT_SLAB_DEBUG */
  54. #if defined (RT_USING_HEAP) && defined (RT_USING_SLAB)
  55. #ifdef RT_USING_HOOK
  56. static void (*rt_malloc_hook)(void *ptr, rt_size_t size);
  57. static void (*rt_free_hook)(void *ptr);
  58. /**
  59. * @addtogroup Hook
  60. */
  61. /*@{*/
  62. /**
  63. * This function will set a hook function, which will be invoked when a memory
  64. * block is allocated from heap memory.
  65. *
  66. * @param hook the hook function
  67. */
  68. void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
  69. {
  70. rt_malloc_hook = hook;
  71. }
  72. /**
  73. * This function will set a hook function, which will be invoked when a memory
  74. * block is released to heap memory.
  75. *
  76. * @param hook the hook function
  77. */
  78. void rt_free_sethook(void (*hook)(void *ptr))
  79. {
  80. rt_free_hook = hook;
  81. }
  82. /*@}*/
  83. #endif
  84. /*
  85. * slab allocator implementation
  86. *
  87. * A slab allocator reserves a ZONE for each chunk size, then lays the
  88. * chunks out in an array within the zone. Allocation and deallocation
  89. * is nearly instantanious, and fragmentation/overhead losses are limited
  90. * to a fixed worst-case amount.
  91. *
  92. * The downside of this slab implementation is in the chunk size
  93. * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
  94. * In a kernel implementation all this memory will be physical so
  95. * the zone size is adjusted downward on machines with less physical
  96. * memory. The upside is that overhead is bounded... this is the *worst*
  97. * case overhead.
  98. *
  99. * Slab management is done on a per-cpu basis and no locking or mutexes
  100. * are required, only a critical section. When one cpu frees memory
  101. * belonging to another cpu's slab manager an asynchronous IPI message
  102. * will be queued to execute the operation. In addition, both the
  103. * high level slab allocator and the low level zone allocator optimize
  104. * M_ZERO requests, and the slab allocator does not have to pre initialize
  105. * the linked list of chunks.
  106. *
  107. * XXX Balancing is needed between cpus. Balance will be handled through
  108. * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
  109. *
  110. * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
  111. * the new zone should be restricted to M_USE_RESERVE requests only.
  112. *
  113. * Alloc Size Chunking Number of zones
  114. * 0-127 8 16
  115. * 128-255 16 8
  116. * 256-511 32 8
  117. * 512-1023 64 8
  118. * 1024-2047 128 8
  119. * 2048-4095 256 8
  120. * 4096-8191 512 8
  121. * 8192-16383 1024 8
  122. * 16384-32767 2048 8
  123. * (if RT_MM_PAGE_SIZE is 4K the maximum zone allocation is 16383)
  124. *
  125. * Allocations >= zone_limit go directly to kmem.
  126. *
  127. * API REQUIREMENTS AND SIDE EFFECTS
  128. *
  129. * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
  130. * have remained compatible with the following API requirements:
  131. *
  132. * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
  133. * + all power-of-2 sized allocations are power-of-2 aligned (twe)
  134. * + malloc(0) is allowed and returns non-RT_NULL (ahc driver)
  135. * + ability to allocate arbitrarily large chunks of memory
  136. */
  137. /*
  138. * Chunk structure for free elements
  139. */
  140. typedef struct slab_chunk
  141. {
  142. struct slab_chunk *c_next;
  143. } slab_chunk;
  144. /*
  145. * The IN-BAND zone header is placed at the beginning of each zone.
  146. */
  147. typedef struct slab_zone {
  148. rt_int32_t z_magic; /* magic number for sanity check */
  149. rt_int32_t z_nfree; /* total free chunks / ualloc space in zone */
  150. rt_int32_t z_nmax; /* maximum free chunks */
  151. struct slab_zone *z_next; /* zoneary[] link if z_nfree non-zero */
  152. rt_uint8_t *z_baseptr; /* pointer to start of chunk array */
  153. rt_int32_t z_uindex; /* current initial allocation index */
  154. rt_int32_t z_chunksize; /* chunk size for validation */
  155. rt_int32_t z_zoneindex; /* zone index */
  156. slab_chunk *z_freechunk; /* free chunk list */
  157. } slab_zone;
  158. #define ZALLOC_SLAB_MAGIC 0x51ab51ab
  159. #define ZALLOC_ZONE_LIMIT (16 * 1024) /* max slab-managed alloc */
  160. #define ZALLOC_MIN_ZONE_SIZE (32 * 1024) /* minimum zone size */
  161. #define ZALLOC_MAX_ZONE_SIZE (128 * 1024) /* maximum zone size */
  162. #define NZONES 72 /* number of zones */
  163. #define ZONE_RELEASE_THRESH 2 /* threshold number of zones */
  164. static slab_zone *zone_array[NZONES]; /* linked list of zones NFree > 0 */
  165. static slab_zone *zone_free; /* whole zones that have become free */
  166. static int zone_free_cnt;
  167. static int zone_size;
  168. static int zone_limit;
  169. static int zone_page_cnt;
  170. #ifdef RT_MEM_STATS
  171. /* some statistical variable */
  172. static rt_uint32_t rt_mem_allocated = 0;
  173. static rt_uint32_t rt_mem_zone = 0;
  174. static rt_uint32_t rt_mem_page_allocated = 0;
  175. #endif
  176. /*
  177. * Misc constants. Note that allocations that are exact multiples of
  178. * RT_MM_PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
  179. */
  180. #define MIN_CHUNK_SIZE 8 /* in bytes */
  181. #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
  182. /*
  183. * Array of descriptors that describe the contents of each page
  184. */
  185. #define PAGE_TYPE_FREE 0x00
  186. #define PAGE_TYPE_SMALL 0x01
  187. #define PAGE_TYPE_LARGE 0x02
  188. struct memusage {
  189. rt_uint32_t type:2 ; /* page type */
  190. rt_uint32_t size:30; /* pages allocated or offset from zone */
  191. };
  192. static struct memusage *memusage = RT_NULL;
  193. #define btokup(addr) (&memusage[((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS])
  194. static rt_uint32_t heap_start, heap_end;
  195. /* page allocator */
  196. struct rt_page_head
  197. {
  198. struct rt_page_head *next; /* next valid page */
  199. rt_size_t page; /* number of page */
  200. /* dummy */
  201. char dummy[RT_MM_PAGE_SIZE - (sizeof(struct rt_page_head*) + sizeof (rt_size_t))];
  202. };
  203. static struct rt_page_head *rt_page_list;
  204. static void *rt_page_alloc(rt_size_t npages)
  205. {
  206. struct rt_page_head *b, *n;
  207. struct rt_page_head **prev;
  208. RT_ASSERT(npages != 0);
  209. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  210. {
  211. if (b->page > npages)
  212. {
  213. /* splite pages */
  214. n = b + npages;
  215. n->next = b->next;
  216. n->page = b->page - npages;
  217. *prev = n;
  218. break;
  219. }
  220. if (b->page == npages)
  221. {
  222. /* this node fit, remove this node */
  223. *prev = b->next;
  224. break;
  225. }
  226. }
  227. return b;
  228. }
  229. static void rt_page_free(void *addr, rt_size_t npages)
  230. {
  231. struct rt_page_head *b, *n;
  232. struct rt_page_head **prev;
  233. RT_ASSERT(addr != RT_NULL);
  234. RT_ASSERT((rt_uint32_t)addr % RT_MM_PAGE_SIZE == 0);
  235. RT_ASSERT(npages != 0);
  236. n = (struct rt_page_head *)addr;
  237. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  238. {
  239. RT_ASSERT(b->page > 0);
  240. RT_ASSERT(b > n || b + b->page <= n);
  241. if (b + b->page == n)
  242. {
  243. if (b + (b->page += npages) == b->next)
  244. {
  245. b->page += b->next->page;
  246. b->next = b->next->next;
  247. }
  248. return;
  249. }
  250. if (b == n + npages)
  251. {
  252. n->page = b->page + npages;
  253. n->next = b->next;
  254. *prev = n;
  255. return;
  256. }
  257. if (b > n + npages) break;
  258. }
  259. n->page = npages;
  260. n->next = b;
  261. *prev = n;
  262. }
  263. /*
  264. * Initialize the page allocator
  265. */
  266. static void rt_page_init(void* addr, rt_size_t npages)
  267. {
  268. RT_ASSERT(addr != RT_NULL);
  269. RT_ASSERT(npages != 0);
  270. rt_page_list = RT_NULL;
  271. rt_page_free(addr, npages);
  272. }
  273. /**
  274. * @ingroup SystemInit
  275. *
  276. * This function will init system heap
  277. *
  278. * @param begin_addr the beginning address of system page
  279. * @param end_addr the end address of system page
  280. *
  281. */
  282. void rt_system_heap_init(void *begin_addr, void* end_addr)
  283. {
  284. rt_uint32_t limsize, npages;
  285. /* align begin and end addr to page */
  286. heap_start = RT_ALIGN((rt_uint32_t)begin_addr, RT_MM_PAGE_SIZE);
  287. heap_end = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_MM_PAGE_SIZE);
  288. limsize = heap_end - heap_start;
  289. npages = limsize / RT_MM_PAGE_SIZE;
  290. #ifdef RT_SLAB_DEBUG
  291. rt_kprintf("heap[0x%x - 0x%x], size 0x%x, 0x%x pages\n", heap_start, heap_end, limsize, npages);
  292. #endif
  293. /* init pages */
  294. rt_page_init((void*)heap_start, npages);
  295. /* calculate zone size */
  296. zone_size = ZALLOC_MIN_ZONE_SIZE;
  297. while (zone_size < ZALLOC_MAX_ZONE_SIZE && (zone_size << 1) < (limsize/1024))
  298. zone_size <<= 1;
  299. zone_limit = zone_size / 4;
  300. if (zone_limit > ZALLOC_ZONE_LIMIT) zone_limit = ZALLOC_ZONE_LIMIT;
  301. zone_page_cnt = zone_size / RT_MM_PAGE_SIZE;
  302. #ifdef RT_SLAB_DEBUG
  303. rt_kprintf("zone size 0x%x, zone page count 0x%x\n", zone_size, zone_page_cnt);
  304. #endif
  305. /* allocate memusage array */
  306. limsize = npages * sizeof(struct memusage);
  307. limsize = RT_ALIGN(limsize, RT_MM_PAGE_SIZE);
  308. memusage = rt_page_alloc(limsize/RT_MM_PAGE_SIZE);
  309. #ifdef RT_SLAB_DEBUG
  310. rt_kprintf("memusage 0x%x, size 0x%x\n", (rt_uint32_t)memusage, limsize);
  311. #endif
  312. }
  313. /*
  314. * Calculate the zone index for the allocation request size and set the
  315. * allocation request size to that particular zone's chunk size.
  316. */
  317. rt_inline int zoneindex(rt_uint32_t *bytes)
  318. {
  319. rt_uint32_t n = (rt_uint32_t)*bytes; /* unsigned for shift opt */
  320. if (n < 128)
  321. {
  322. *bytes = n = (n + 7) & ~7;
  323. return(n / 8 - 1); /* 8 byte chunks, 16 zones */
  324. }
  325. if (n < 256)
  326. {
  327. *bytes = n = (n + 15) & ~15;
  328. return(n / 16 + 7);
  329. }
  330. if (n < 8192)
  331. {
  332. if (n < 512)
  333. {
  334. *bytes = n = (n + 31) & ~31;
  335. return(n / 32 + 15);
  336. }
  337. if (n < 1024)
  338. {
  339. *bytes = n = (n + 63) & ~63;
  340. return(n / 64 + 23);
  341. }
  342. if (n < 2048)
  343. {
  344. *bytes = n = (n + 127) & ~127;
  345. return(n / 128 + 31);
  346. }
  347. if (n < 4096)
  348. {
  349. *bytes = n = (n + 255) & ~255;
  350. return(n / 256 + 39);
  351. }
  352. *bytes = n = (n + 511) & ~511;
  353. return(n / 512 + 47);
  354. }
  355. if (n < 16384)
  356. {
  357. *bytes = n = (n + 1023) & ~1023;
  358. return(n / 1024 + 55);
  359. }
  360. rt_kprintf("Unexpected byte count %d", n);
  361. return 0;
  362. }
  363. /**
  364. * @addtogroup MM
  365. */
  366. /*@{*/
  367. /**
  368. * This function will allocate a block from system heap memory.
  369. * - If the nbytes is less than zero,
  370. * or
  371. * - If there is no nbytes sized memory valid in system,
  372. * the RT_NULL is returned.
  373. *
  374. * @param size the size of memory to be allocated
  375. *
  376. * @return the allocated memory
  377. *
  378. */
  379. void *rt_malloc(rt_size_t size)
  380. {
  381. slab_zone *z;
  382. rt_int32_t zi;
  383. slab_chunk *chunk;
  384. rt_base_t interrupt_level;
  385. struct memusage *kup;
  386. /* zero size, return RT_NULL */
  387. if (size == 0) return RT_NULL;
  388. /*
  389. * Handle large allocations directly. There should not be very many of
  390. * these so performance is not a big issue.
  391. */
  392. if (size >= zone_limit)
  393. {
  394. size = RT_ALIGN(size, RT_MM_PAGE_SIZE);
  395. chunk = rt_page_alloc(size >> RT_MM_PAGE_BITS);
  396. if (chunk == RT_NULL) return RT_NULL;
  397. /* set kup */
  398. kup = btokup(chunk);
  399. kup->type = PAGE_TYPE_LARGE;
  400. kup->size = size >> RT_MM_PAGE_BITS;
  401. #ifdef RT_SLAB_DEBUG
  402. rt_kprintf("malloc a large memory 0x%x, page cnt %d, kup %d\n",
  403. size,
  404. size >> RT_MM_PAGE_BITS,
  405. ((rt_uint32_t)chunk - heap_start) >> RT_MM_PAGE_BITS);
  406. #endif
  407. /* lock interrupt */
  408. interrupt_level = rt_hw_interrupt_disable();
  409. goto done;
  410. }
  411. /*
  412. * Attempt to allocate out of an existing zone. First try the free list,
  413. * then allocate out of unallocated space. If we find a good zone move
  414. * it to the head of the list so later allocations find it quickly
  415. * (we might have thousands of zones in the list).
  416. *
  417. * Note: zoneindex() will panic of size is too large.
  418. */
  419. zi = zoneindex(&size);
  420. RT_ASSERT(zi < NZONES);
  421. #ifdef RT_SLAB_DEBUG
  422. rt_kprintf("try to malloc 0x%x on zone: %d\n", size, zi);
  423. #endif
  424. interrupt_level = rt_hw_interrupt_disable();
  425. if ((z = zone_array[zi]) != RT_NULL)
  426. {
  427. RT_ASSERT(z->z_nfree > 0);
  428. /* Remove us from the zone_array[] when we become empty */
  429. if (--z->z_nfree == 0)
  430. {
  431. zone_array[zi] = z->z_next;
  432. z->z_next = RT_NULL;
  433. }
  434. /*
  435. * No chunks are available but nfree said we had some memory, so
  436. * it must be available in the never-before-used-memory area
  437. * governed by uindex. The consequences are very serious if our zone
  438. * got corrupted so we use an explicit rt_kprintf rather then a KASSERT.
  439. */
  440. if (z->z_uindex + 1 != z->z_nmax)
  441. {
  442. z->z_uindex = z->z_uindex + 1;
  443. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  444. }
  445. else
  446. {
  447. /* find on free chunk list */
  448. chunk = z->z_freechunk;
  449. /* remove this chunk from list */
  450. z->z_freechunk = z->z_freechunk->c_next;
  451. }
  452. goto done;
  453. }
  454. /*
  455. * If all zones are exhausted we need to allocate a new zone for this
  456. * index.
  457. *
  458. * At least one subsystem, the tty code (see CROUND) expects power-of-2
  459. * allocations to be power-of-2 aligned. We maintain compatibility by
  460. * adjusting the base offset below.
  461. */
  462. {
  463. rt_int32_t off;
  464. if ((z = zone_free) != RT_NULL)
  465. {
  466. /* remove zone from free zone list */
  467. zone_free = z->z_next;
  468. --zone_free_cnt;
  469. }
  470. else
  471. {
  472. /* allocate a zone from page */
  473. z = rt_page_alloc(zone_size / RT_MM_PAGE_SIZE);
  474. if (z == RT_NULL) goto fail;
  475. #ifdef RT_SLAB_DEBUG
  476. rt_kprintf("alloc a new zone: 0x%x\n", (rt_uint32_t)z);
  477. #endif
  478. /* set message usage */
  479. for (off = 0, kup = btokup(z); off < zone_page_cnt; off ++)
  480. {
  481. kup->type = PAGE_TYPE_SMALL;
  482. kup->size = off;
  483. kup ++;
  484. }
  485. }
  486. /* clear to zero */
  487. rt_memset(z, 0, sizeof(slab_zone));
  488. /* offset of slab zone struct in zone */
  489. off = sizeof(slab_zone);
  490. /*
  491. * Guarentee power-of-2 alignment for power-of-2-sized chunks.
  492. * Otherwise just 8-byte align the data.
  493. */
  494. if ((size | (size - 1)) + 1 == (size << 1))
  495. off = (off + size - 1) & ~(size - 1);
  496. else
  497. off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
  498. z->z_magic = ZALLOC_SLAB_MAGIC;
  499. z->z_zoneindex = zi;
  500. z->z_nmax = (zone_size - off) / size;
  501. z->z_nfree = z->z_nmax - 1;
  502. z->z_baseptr = (rt_uint8_t*)z + off;
  503. z->z_uindex = 0;
  504. z->z_chunksize = size;
  505. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  506. /* link to zone array */
  507. z->z_next = zone_array[zi];
  508. zone_array[zi] = z;
  509. }
  510. done:
  511. rt_hw_interrupt_enable(interrupt_level);
  512. #ifdef RT_USING_HOOK
  513. if (rt_malloc_hook != RT_NULL) rt_malloc_hook((char*)chunk, size);
  514. #endif
  515. return chunk;
  516. fail:
  517. rt_hw_interrupt_enable(interrupt_level);
  518. return RT_NULL;
  519. }
  520. /**
  521. * This function will change the size of previously allocated memory block.
  522. *
  523. * @param ptr the previously allocated memory block
  524. * @param size the new size of memory block
  525. *
  526. * @return the allocated memory
  527. */
  528. void *rt_realloc(void *ptr, rt_size_t size)
  529. {
  530. void *nptr;
  531. slab_zone *z;
  532. struct memusage *kup;
  533. if (ptr == RT_NULL) return rt_malloc(size);
  534. if (size == 0)
  535. {
  536. rt_free(ptr);
  537. return RT_NULL;
  538. }
  539. /*
  540. * Get the original allocation's zone. If the new request winds up
  541. * using the same chunk size we do not have to do anything.
  542. */
  543. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  544. if (kup->type == PAGE_TYPE_LARGE)
  545. {
  546. rt_size_t osize;
  547. osize = kup->size << RT_MM_PAGE_BITS;
  548. if ((nptr = rt_malloc(size)) == RT_NULL) return RT_NULL;
  549. rt_memcpy(nptr, ptr, size > osize? osize : size);
  550. rt_free(ptr);
  551. return nptr;
  552. }
  553. else if (kup->type == PAGE_TYPE_SMALL)
  554. {
  555. z = (slab_zone*)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE);
  556. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  557. zoneindex(&size);
  558. if (z->z_chunksize == size) return(ptr); /* same chunk */
  559. /*
  560. * Allocate memory for the new request size. Note that zoneindex has
  561. * already adjusted the request size to the appropriate chunk size, which
  562. * should optimize our bcopy(). Then copy and return the new pointer.
  563. */
  564. if ((nptr = rt_malloc(size)) == RT_NULL) return RT_NULL;
  565. rt_memcpy(nptr, ptr, size > z->z_chunksize? z->z_chunksize : size);
  566. rt_free(ptr);
  567. return nptr;
  568. }
  569. return RT_NULL;
  570. }
  571. /**
  572. * This function will contiguously allocate enough space for count objects
  573. * that are size bytes of memory each and returns a pointer to the allocated
  574. * memory.
  575. *
  576. * The allocated memory is filled with bytes of value zero.
  577. *
  578. * @param count number of objects to allocate
  579. * @param size size of the objects to allocate
  580. *
  581. * @return pointer to allocated memory / NULL pointer if there is an error
  582. */
  583. void *rt_calloc(rt_size_t count, rt_size_t size)
  584. {
  585. void *p;
  586. /* allocate 'count' objects of size 'size' */
  587. p = rt_malloc(count * size);
  588. /* zero the memory */
  589. if (p) rt_memset(p, 0, count * size);
  590. return p;
  591. }
  592. /**
  593. * This function will release the previously allocated memory block by rt_malloc.
  594. * The released memory block is taken back to system heap.
  595. *
  596. * @param ptr the address of memory which will be released
  597. */
  598. void rt_free(void *ptr)
  599. {
  600. slab_zone *z;
  601. slab_chunk *chunk;
  602. struct memusage *kup;
  603. rt_base_t interrupt_level;
  604. /* free a RT_NULL pointer */
  605. if (ptr == RT_NULL) return ;
  606. #ifdef RT_USING_HOOK
  607. if (rt_free_hook != RT_NULL) rt_free_hook(ptr);
  608. #endif
  609. /* get memory usage */
  610. #ifdef RT_SLAB_DEBUG
  611. rt_uint32 addr = ((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  612. rt_kprintf("free a memory 0x%x and align to 0x%x, kup index %d\n",
  613. (rt_uint32_t)ptr,
  614. (rt_uint32_t)addr,
  615. ((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS);
  616. #endif
  617. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  618. /* release large allocation */
  619. if (kup->type == PAGE_TYPE_LARGE)
  620. {
  621. rt_uint32_t size;
  622. /* clear page counter */
  623. interrupt_level = rt_hw_interrupt_disable();
  624. size = kup->size;
  625. kup->size = 0;
  626. rt_hw_interrupt_enable(interrupt_level);
  627. #ifdef RT_SLAB_DEBUG
  628. rt_kprintf("free large memory block 0x%x, page count %d\n", (rt_uint32_t)ptr, size);
  629. #endif
  630. /* free this page */
  631. rt_page_free(ptr, size);
  632. return;
  633. }
  634. /* zone case. get out zone. */
  635. z = (slab_zone*)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE);
  636. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  637. interrupt_level = rt_hw_interrupt_disable();
  638. chunk = (slab_chunk*)ptr;
  639. chunk->c_next = z->z_freechunk;
  640. z->z_freechunk = chunk;
  641. /*
  642. * Bump the number of free chunks. If it becomes non-zero the zone
  643. * must be added back onto the appropriate list.
  644. */
  645. if (z->z_nfree++ == 0)
  646. {
  647. z->z_next = zone_array[z->z_zoneindex];
  648. zone_array[z->z_zoneindex] = z;
  649. }
  650. /*
  651. * If the zone becomes totally free, and there are other zones we
  652. * can allocate from, move this zone to the FreeZones list. Since
  653. * this code can be called from an IPI callback, do *NOT* try to mess
  654. * with kernel_map here. Hysteresis will be performed at malloc() time.
  655. */
  656. if (z->z_nfree == z->z_nmax &&
  657. (z->z_next || zone_array[z->z_zoneindex] != z))
  658. {
  659. slab_zone **pz;
  660. #ifdef RT_SLAB_DEBUG
  661. rt_kprintf("free zone 0x%x\n", (rt_uint32_t)z, z->z_zoneindex);
  662. #endif
  663. /* remove zone from zone array list */
  664. for (pz = &zone_array[z->z_zoneindex]; z != *pz; pz = &(*pz)->z_next) ;
  665. *pz = z->z_next;
  666. /* reset zone */
  667. z->z_magic = -1;
  668. /* insert to free zone list */
  669. z->z_next = zone_free;
  670. zone_free = z;
  671. ++zone_free_cnt;
  672. /* release zone to page allocator */
  673. if (zone_free_cnt > ZONE_RELEASE_THRESH)
  674. {
  675. register rt_base_t i;
  676. z = zone_free;
  677. zone_free = z->z_next;
  678. --zone_free_cnt;
  679. /* set message usage */
  680. for (i = 0, kup = btokup(z); i < zone_page_cnt; i ++)
  681. {
  682. kup->type = PAGE_TYPE_FREE;
  683. kup->size = 0;
  684. kup ++;
  685. }
  686. /* release pages */
  687. rt_page_free(z, zone_size);
  688. }
  689. }
  690. rt_hw_interrupt_enable(interrupt_level);
  691. }
  692. /*@}*/
  693. #endif