completion_tc.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. /*
  2. * Copyright (c) 2006-2024, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2024-04-30 Shell init ver.
  9. * 2025-11-16 ChuanN-sudo add standardized utest documentation block
  10. */
  11. /**
  12. * Test Case Name: IPC Completion Basic Test
  13. *
  14. * Test Objectives:
  15. * - Validate rt_completion initialization, wait, and wake-up mechanisms.
  16. * - Verify thread synchronization in producer-consumer model.
  17. * - Test core APIs: rt_completion_init(), rt_completion_wait_flags(), rt_completion_wakeup()
  18. *
  19. * Test Scenarios:
  20. * - Producer thread generates incrementing data and notifies consumer.
  21. * - Consumer thread waits for data updates and validates integrity.
  22. * - Random delays simulate race conditions in synchronization.
  23. *
  24. * Verification Metrics:
  25. * - The producer should correctly increment the test data and signal completion.
  26. * - The consumer should correctly wait for data update, consume it, and signal completion.
  27. * - Data integrity should be maintained between producer and consumer.
  28. * - Synchronization is properly done so both can see consistent data.
  29. * - Random latency is introduced to simulate racing scenarios.
  30. *
  31. * Dependencies:
  32. * - Hardware requirements: QEMU emulator or any hardware platform that supports RT-Thread.
  33. * - Software configuration:
  34. * - RT_USING_UTEST must be enabled (select "RT-Thread Utestcases" in menuconfig).
  35. * - RT_UTEST_COMPLETION must be enabled (enable via: RT-Thread Utestcases -> Kernel Components -> Drivers -> IPC Test -> IPC Completion Test).
  36. * - Environmental Assumptions: System scheduler working normally.
  37. *
  38. * Expected Results:
  39. * - Progress logs: "[ INFO ] components.drivers.ipc.rt_completion_basic: Summary:...Test times:..."
  40. * - Final output: "[ PASSED ] [ result ] testcase (components.drivers.ipc.rt_completion_basic)"
  41. * - No assertions triggered.
  42. */
  43. #define TEST_LATENCY_TICK (1)
  44. #define TEST_LOOP_TIMES (60 * RT_TICK_PER_SECOND)
  45. #define TEST_PROGRESS_ON (RT_TICK_PER_SECOND)
  46. #include "utest.h"
  47. #include <ipc/completion.h>
  48. #include <rtthread.h>
  49. #include <stdlib.h>
  50. static struct rt_completion _prod_completion;
  51. static struct rt_completion _cons_completion;
  52. static int _test_data = 0;
  53. static rt_atomic_t _progress_counter;
  54. static struct rt_semaphore _thr_exit_sem;
  55. static void done_safely(struct rt_completion *completion)
  56. {
  57. rt_err_t error;
  58. /* Signal completion */
  59. error = rt_completion_wakeup(completion);
  60. /* try again if failed to produce */
  61. if (error == -RT_EEMPTY)
  62. {
  63. rt_thread_yield();
  64. }
  65. else if (error)
  66. {
  67. uassert_false(0);
  68. rt_thread_delete(rt_thread_self());
  69. }
  70. }
  71. static void wait_safely(struct rt_completion *completion)
  72. {
  73. rt_err_t error;
  74. do
  75. {
  76. error = rt_completion_wait_flags(completion, RT_WAITING_FOREVER,
  77. RT_INTERRUPTIBLE);
  78. if (error)
  79. {
  80. uassert_true(error == -RT_EINTR);
  81. rt_thread_yield();
  82. }
  83. else
  84. {
  85. break;
  86. }
  87. } while (1);
  88. }
  89. static void producer_thread_entry(void *parameter)
  90. {
  91. for (size_t i = 0; i < TEST_LOOP_TIMES; i++)
  92. {
  93. /* Produce data */
  94. _test_data++;
  95. /* notify consumer */
  96. done_safely(&_prod_completion);
  97. /* Delay before producing next data */
  98. rt_thread_delay(TEST_LATENCY_TICK);
  99. /* sync with consumer */
  100. wait_safely(&_cons_completion);
  101. }
  102. rt_sem_release(&_thr_exit_sem);
  103. }
  104. static void _wait_until_edge(void)
  105. {
  106. rt_tick_t entry_level, current;
  107. rt_base_t random_latency;
  108. entry_level = rt_tick_get();
  109. do
  110. {
  111. current = rt_tick_get();
  112. } while (current == entry_level);
  113. /* give a random latency for test */
  114. random_latency = rand();
  115. entry_level = current;
  116. for (size_t i = 0; i < random_latency; i++)
  117. {
  118. current = rt_tick_get();
  119. if (current != entry_level) break;
  120. }
  121. }
  122. static void consumer_thread_entry(void *parameter)
  123. {
  124. int local_test_data = 0;
  125. rt_thread_startup(parameter);
  126. for (size_t i = 0; i < TEST_LOOP_TIMES; i++)
  127. {
  128. /* add more random case for test */
  129. _wait_until_edge();
  130. /* Wait for data update */
  131. wait_safely(&_prod_completion);
  132. /* Consume data */
  133. if (local_test_data + 1 != _test_data)
  134. {
  135. LOG_I("local test data is %d, shared test data is %d",
  136. local_test_data, _test_data);
  137. uassert_true(0);
  138. }
  139. else if (rt_atomic_add(&_progress_counter, 1) % TEST_PROGRESS_ON == 0)
  140. {
  141. uassert_true(1);
  142. }
  143. local_test_data = _test_data;
  144. done_safely(&_cons_completion);
  145. }
  146. rt_sem_release(&_thr_exit_sem);
  147. }
  148. static void testcase(void)
  149. {
  150. /* Initialize completion object */
  151. rt_completion_init(&_prod_completion);
  152. rt_completion_init(&_cons_completion);
  153. /* Create producer and consumer threads */
  154. rt_thread_t producer_thread =
  155. rt_thread_create("producer", producer_thread_entry, RT_NULL,
  156. UTEST_THR_STACK_SIZE, UTEST_THR_PRIORITY, 100);
  157. rt_thread_t consumer_thread =
  158. rt_thread_create("consumer", consumer_thread_entry, producer_thread,
  159. UTEST_THR_STACK_SIZE, UTEST_THR_PRIORITY, 100);
  160. uassert_true(producer_thread != RT_NULL);
  161. uassert_true(consumer_thread != RT_NULL);
  162. LOG_I("Summary:\n"
  163. "\tTest times: %ds(%d)",
  164. TEST_LOOP_TIMES / RT_TICK_PER_SECOND, TEST_LOOP_TIMES);
  165. rt_thread_startup(consumer_thread);
  166. for (size_t i = 0; i < 2; i++)
  167. {
  168. rt_sem_take(&_thr_exit_sem, RT_WAITING_FOREVER);
  169. }
  170. }
  171. static rt_err_t utest_tc_init(void)
  172. {
  173. _test_data = 0;
  174. _progress_counter = 0;
  175. rt_sem_init(&_thr_exit_sem, "test", 0, RT_IPC_FLAG_PRIO);
  176. return RT_EOK;
  177. }
  178. static rt_err_t utest_tc_cleanup(void)
  179. {
  180. rt_sem_detach(&_thr_exit_sem);
  181. return RT_EOK;
  182. }
  183. UTEST_TC_EXPORT(testcase, "components.drivers.ipc.rt_completion_basic",
  184. utest_tc_init, utest_tc_cleanup, 10);