uart_framework.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325
  1. /*
  2. * Change Logs:
  3. * Date Author Notes
  4. * 2024-05-24 Slyant the first version
  5. */
  6. #include <rtthread.h>
  7. #include <rtdevice.h>
  8. #include <uart_framework.h>
  9. enum work_model
  10. {
  11. WORK_NORMAL = 0,
  12. WORK_TAKE,
  13. WORK_RELEASE,
  14. WORK_TAKE_RELEASE
  15. };
  16. static rt_err_t rx_ind(rt_device_t dev, rt_size_t size)
  17. {
  18. uart_framework_t uf = (uart_framework_t)dev->user_data;
  19. rt_sem_release(uf->rx_sem);
  20. return RT_EOK;
  21. }
  22. /**
  23. * @brief 创建 UART 框架
  24. *
  25. * 根据给定的 UART 框架配置,创建并初始化 UART 框架。
  26. *
  27. * @param cfg UART 框架配置指针
  28. *
  29. * @return UART 框架指针,如果创建失败则返回 RT_NULL
  30. */
  31. uart_framework_t uart_framework_create(struct uart_framework_cfg *cfg)
  32. {
  33. rt_err_t open_result;
  34. static int rx_sem_count = 0;
  35. static int rx_mut_count = 0;
  36. char ufsem_name[RT_NAME_MAX] = {0};
  37. char ufmut_name[RT_NAME_MAX] = {0};
  38. uart_framework_t uf = rt_calloc(1, sizeof(struct uart_framework));
  39. if (uf == RT_NULL)
  40. return RT_NULL;
  41. uf->uart_device = rt_device_find(cfg->uart_name);
  42. if (uf->uart_device == RT_NULL || uf->uart_device->type != RT_Device_Class_Char)
  43. {
  44. rt_free(uf);
  45. return RT_NULL;
  46. }
  47. rt_snprintf(ufsem_name, RT_NAME_MAX, "ufsem%d", rx_sem_count++);
  48. uf->rx_sem = rt_sem_create(ufsem_name, 0, RT_IPC_FLAG_FIFO);
  49. if (uf->rx_sem == RT_NULL)
  50. {
  51. rt_free(uf);
  52. return RT_NULL;
  53. }
  54. rt_snprintf(ufmut_name, RT_NAME_MAX, "ufmut%d", rx_mut_count++);
  55. uf->dev_lock = rt_mutex_create(ufmut_name, RT_IPC_FLAG_FIFO);
  56. if (uf->dev_lock == RT_NULL)
  57. {
  58. rt_sem_delete(uf->rx_sem);
  59. rt_free(uf);
  60. return RT_NULL;
  61. }
  62. uf->rx_buf = rt_calloc(1, cfg->max_frame_size);
  63. if (uf->rx_buf == RT_NULL)
  64. {
  65. rt_sem_delete(uf->rx_sem);
  66. rt_mutex_delete(uf->dev_lock);
  67. rt_free(uf);
  68. return RT_NULL;
  69. }
  70. rt_memcpy(&uf->cfg, cfg, sizeof(struct uart_framework_cfg));
  71. #ifdef RT_USING_SERIAL_V2
  72. open_result = rt_device_open(uf->uart_device, RT_DEVICE_FLAG_RX_NON_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING);
  73. #else
  74. #ifdef RT_SERIAL_USING_DMA
  75. /* using DMA mode first */
  76. open_result = rt_device_open(uf->uart_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_DMA_RX);
  77. /* using interrupt mode when DMA mode not supported */
  78. if (open_result == RT_EOK)
  79. {
  80. }
  81. else if (open_result == -RT_EIO)
  82. #endif
  83. {
  84. open_result = rt_device_open(uf->uart_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_INT_RX);
  85. }
  86. #endif
  87. RT_ASSERT(open_result == RT_EOK);
  88. uf->uart_device->user_data = uf;
  89. rt_device_set_rx_indicate(uf->uart_device, rx_ind);
  90. return uf;
  91. }
  92. /**
  93. * @brief 发送数据
  94. *
  95. * 根据给定的工作模式和 UART 框架,发送数据到 UART 设备。
  96. *
  97. * @param model 工作模式
  98. * @param uf UART 框架结构体指针
  99. * @param data 数据指针
  100. * @param size 数据大小
  101. *
  102. * @return 实际发送的字节数
  103. */
  104. static rt_size_t _send(enum work_model model, uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  105. {
  106. while (rt_tick_get() - uf->send_tick < rt_tick_from_millisecond(uf->cfg.send_interval_ms))
  107. {
  108. rt_thread_mdelay(10);
  109. }
  110. if (model == WORK_TAKE || model == WORK_TAKE_RELEASE)
  111. {
  112. rt_mutex_take(uf->dev_lock, RT_WAITING_FOREVER);
  113. rt_sem_control(uf->rx_sem, RT_IPC_CMD_RESET, 0);
  114. while (rt_device_read(uf->uart_device, 0, &uf->rx_ch, 1))
  115. ;
  116. }
  117. if (uf->cfg.rs485_txd)
  118. uf->cfg.rs485_txd();
  119. rt_size_t wsize = rt_device_write(uf->uart_device, 0, data, size);
  120. if (uf->cfg.rs485_rxd)
  121. uf->cfg.rs485_rxd();
  122. uf->send_tick = rt_tick_get(); // 重置定时器
  123. if (model == WORK_TAKE_RELEASE)
  124. {
  125. rt_mutex_release(uf->dev_lock);
  126. }
  127. return wsize;
  128. }
  129. /**
  130. * @brief 接收串口数据
  131. *
  132. * 根据指定的工作模型,从串口框架中接收数据,并处理接收到的数据帧。
  133. *
  134. * @param model 工作模型
  135. * @param uf 串口框架对象
  136. * @param timeout_ms 超时时间(毫秒)
  137. * @param frame_handler 数据帧处理函数
  138. * @param out 输出缓冲区
  139. * @param out_max_size 输出缓冲区最大大小
  140. *
  141. * @return 错误码,RT_EOK 表示成功,其他值表示错误
  142. */
  143. static rt_err_t _receive(enum work_model model, uart_framework_t uf, rt_uint32_t timeout_ms,
  144. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  145. {
  146. // rt_memset(uf->rx_buf, 0, uf->cfg.max_frame_size);
  147. uf->rx_size = 0;
  148. uf->last_tick = rt_tick_get();
  149. while (1)
  150. {
  151. if (rt_sem_take(uf->rx_sem, rt_tick_from_millisecond(timeout_ms)) == RT_EOK)
  152. {
  153. if (model == WORK_TAKE_RELEASE)
  154. {
  155. rt_mutex_take(uf->dev_lock, RT_WAITING_FOREVER);
  156. }
  157. while (1)
  158. {
  159. while (rt_device_read(uf->uart_device, 0, &uf->rx_ch, 1))
  160. {
  161. uf->last_tick = rt_tick_get(); // 重置定时器
  162. if (uf->rx_size < uf->cfg.max_frame_size)
  163. {
  164. uf->rx_buf[uf->rx_size++] = uf->rx_ch;
  165. }
  166. }
  167. if (rt_tick_get() - uf->last_tick > rt_tick_from_millisecond(uf->cfg.frame_interval_ms))
  168. {
  169. if (uf->rx_size > 0)
  170. {
  171. if (out && out_max_size > 0)
  172. {
  173. rt_memcpy(out, uf->rx_buf, uf->rx_size > out_max_size ? out_max_size : uf->rx_size);
  174. }
  175. if (frame_handler)
  176. {
  177. rt_err_t err = frame_handler(uf->rx_buf, uf->rx_size);
  178. if (model == WORK_RELEASE || model == WORK_TAKE_RELEASE)
  179. {
  180. rt_mutex_release(uf->dev_lock);
  181. }
  182. return err;
  183. }
  184. else
  185. {
  186. if (model == WORK_RELEASE || model == WORK_TAKE_RELEASE)
  187. {
  188. rt_mutex_release(uf->dev_lock);
  189. }
  190. return RT_EOK;
  191. }
  192. }
  193. else
  194. {
  195. break;
  196. }
  197. }
  198. rt_thread_mdelay(10);
  199. }
  200. if (model == WORK_RELEASE || model == WORK_TAKE_RELEASE)
  201. {
  202. rt_mutex_release(uf->dev_lock);
  203. }
  204. }
  205. else
  206. {
  207. if (model == WORK_RELEASE)
  208. {
  209. rt_mutex_release(uf->dev_lock);
  210. }
  211. return -RT_ETIMEOUT;
  212. }
  213. }
  214. }
  215. /**
  216. * @brief 发送数据到UART框架
  217. *
  218. * 通过UART框架发送指定大小的数据。
  219. *
  220. * @param uf UART框架对象指针
  221. * @param data 要发送的数据指针
  222. * @param size 数据大小
  223. *
  224. * @return 发送的字节数
  225. */
  226. rt_size_t uart_framework_send(uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  227. {
  228. return _send(WORK_NORMAL, uf, data, size);
  229. }
  230. /**
  231. * @brief UART框架发送数据(独占)
  232. *
  233. * 通过UART框架发送指定大小的数据。
  234. *
  235. * @param uf UART框架对象
  236. * @param data 要发送的数据指针
  237. * @param size 要发送的数据大小
  238. *
  239. * @return 实际发送的数据大小
  240. */
  241. rt_size_t uart_framework_send_take(uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  242. {
  243. return _send(WORK_TAKE, uf, data, size);
  244. }
  245. /**
  246. * @brief UART框架发送数据(独占发送后释放)
  247. *
  248. * 通过UART框架发送指定大小的数据。
  249. *
  250. * @param uf UART框架对象指针
  251. * @param data 要发送的数据指针
  252. * @param size 要发送的数据大小
  253. *
  254. * @return 实际发送的字节数
  255. */
  256. rt_size_t uart_framework_send_take_release(uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  257. {
  258. return _send(WORK_TAKE_RELEASE, uf, data, size);
  259. }
  260. /**
  261. * @brief 接收UART框架数据
  262. *
  263. * 在给定的超时时间内,从UART框架中接收数据,并调用帧处理器处理接收到的数据。
  264. *
  265. * @param uf UART框架对象
  266. * @param timeout_ms 超时时间(毫秒)
  267. * @param frame_handler 帧处理器函数指针,用于处理接收到的数据
  268. * @param out 存储处理结果的缓冲区
  269. * @param out_max_size 缓冲区最大容量
  270. *
  271. * @return 返回错误码,表示操作是否成功
  272. */
  273. rt_err_t uart_framework_receive(uart_framework_t uf, rt_uint32_t timeout_ms,
  274. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  275. {
  276. return _receive(WORK_NORMAL, uf, timeout_ms, frame_handler, out, out_max_size);
  277. }
  278. /**
  279. * @brief UART 框架接收数据(接收后释放独占)
  280. *
  281. * 从 UART 框架收数据,通过回调函数处理接收到的数据帧。
  282. *
  283. * @param uf UART 框架对象
  284. * @param timeout_ms 超时时间(毫秒)
  285. * @param frame_handler 数据帧处理回调函数
  286. * @param out 存储处理结果的缓冲区
  287. * @param out_max_size 缓冲区最大大小
  288. *
  289. * @return 返回错误码,表示操作结果
  290. */
  291. rt_err_t uart_framework_receive_release(uart_framework_t uf, rt_uint32_t timeout_ms,
  292. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  293. {
  294. return _receive(WORK_RELEASE, uf, timeout_ms, frame_handler, out, out_max_size);
  295. }
  296. /**
  297. * @brief UART框架接收数据(独占接收后释放)
  298. *
  299. * 从UART框架中接收数据,并在处理完成后释放相关资源。
  300. *
  301. * @param uf UART框架指针
  302. * @param timeout_ms 超时时间(单位:毫秒)
  303. * @param frame_handler 帧处理函数指针
  304. * @param out 输出缓冲区指针
  305. * @param out_max_size 输出缓冲区最大大小
  306. *
  307. * @return 返回错误码,表示操作是否成功
  308. */
  309. rt_err_t uart_framework_receive_take_release(uart_framework_t uf, rt_uint32_t timeout_ms,
  310. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  311. {
  312. return _receive(WORK_TAKE_RELEASE, uf, timeout_ms, frame_handler, out, out_max_size);
  313. }