uart_framework.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. /*
  2. * Change Logs:
  3. * Date Author Notes
  4. * 2024-05-24 Slyant the first version
  5. */
  6. #include <rtthread.h>
  7. #include <rtdevice.h>
  8. #include <uart_framework.h>
  9. enum work_model
  10. {
  11. WORK_NORMAL = 0,
  12. WORK_TAKE,
  13. WORK_RELEASE,
  14. WORK_TAKE_RELEASE
  15. };
  16. static rt_err_t rx_ind(rt_device_t dev, rt_size_t size)
  17. {
  18. uart_framework_t uf = (uart_framework_t)dev->user_data;
  19. rt_sem_release(uf->rx_sem);
  20. return RT_EOK;
  21. }
  22. /**
  23. * @brief 创建 UART 框架
  24. *
  25. * 根据给定的 UART 框架配置,创建并初始化 UART 框架。
  26. *
  27. * @param cfg UART 框架配置指针
  28. *
  29. * @return UART 框架指针,如果创建失败则返回 RT_NULL
  30. */
  31. uart_framework_t uart_framework_create(struct uart_framework_cfg *cfg)
  32. {
  33. rt_err_t open_result;
  34. static int rx_sem_count = 0;
  35. static int rx_mut_count = 0;
  36. char ufsem_name[RT_NAME_MAX] = {0};
  37. char ufmut_name[RT_NAME_MAX] = {0};
  38. uart_framework_t uf = rt_calloc(1, sizeof(struct uart_framework));
  39. if (uf == RT_NULL)
  40. return RT_NULL;
  41. uf->uart_device = rt_device_find(cfg->uart_name);
  42. if (uf->uart_device == RT_NULL || uf->uart_device->type != RT_Device_Class_Char)
  43. {
  44. rt_free(uf);
  45. return RT_NULL;
  46. }
  47. rt_snprintf(ufsem_name, RT_NAME_MAX, "ufsem%d", rx_sem_count++);
  48. uf->rx_sem = rt_sem_create(ufsem_name, 0, RT_IPC_FLAG_FIFO);
  49. if (uf->rx_sem == RT_NULL)
  50. {
  51. rt_free(uf);
  52. return RT_NULL;
  53. }
  54. rt_snprintf(ufmut_name, RT_NAME_MAX, "ufmut%d", rx_mut_count++);
  55. uf->dev_lock = rt_mutex_create(ufmut_name, RT_IPC_FLAG_FIFO);
  56. if (uf->dev_lock == RT_NULL)
  57. {
  58. rt_sem_delete(uf->rx_sem);
  59. rt_free(uf);
  60. return RT_NULL;
  61. }
  62. uf->rx_buf = rt_calloc(1, cfg->max_frame_size);
  63. if (uf->rx_buf == RT_NULL)
  64. {
  65. rt_sem_delete(uf->rx_sem);
  66. rt_mutex_delete(uf->dev_lock);
  67. rt_free(uf);
  68. return RT_NULL;
  69. }
  70. rt_memcpy(&uf->cfg, cfg, sizeof(struct uart_framework_cfg));
  71. #ifdef RT_USING_SERIAL_V2
  72. open_result = rt_device_open(uf->uart_device, RT_DEVICE_FLAG_RX_NON_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING);
  73. #else
  74. #ifdef RT_SERIAL_USING_DMA
  75. /* using DMA mode first */
  76. open_result = rt_device_open(uf->uart_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_DMA_RX);
  77. /* using interrupt mode when DMA mode not supported */
  78. if (open_result == RT_EOK)
  79. {
  80. }
  81. else if (open_result == -RT_EIO)
  82. #endif
  83. {
  84. open_result = rt_device_open(uf->uart_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_INT_RX);
  85. }
  86. #endif
  87. RT_ASSERT(open_result == RT_EOK);
  88. uf->uart_device->user_data = uf;
  89. if (uf->cfg.rx_ind)
  90. {
  91. rt_device_set_rx_indicate(uf->uart_device, uf->cfg.rx_ind);
  92. }
  93. else
  94. {
  95. rt_device_set_rx_indicate(uf->uart_device, rx_ind);
  96. }
  97. return uf;
  98. }
  99. /**
  100. * @brief 发送数据
  101. *
  102. * 根据给定的工作模式和 UART 框架,发送数据到 UART 设备。
  103. *
  104. * @param model 工作模式
  105. * @param uf UART 框架结构体指针
  106. * @param data 数据指针
  107. * @param size 数据大小
  108. *
  109. * @return 实际发送的字节数
  110. */
  111. static rt_size_t _send(enum work_model model, uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  112. {
  113. while (rt_tick_get() - uf->send_tick < rt_tick_from_millisecond(uf->cfg.send_interval_ms))
  114. {
  115. rt_thread_mdelay(10);
  116. }
  117. if (model == WORK_TAKE || model == WORK_TAKE_RELEASE)
  118. {
  119. rt_mutex_take(uf->dev_lock, RT_WAITING_FOREVER);
  120. rt_sem_control(uf->rx_sem, RT_IPC_CMD_RESET, 0);
  121. while (rt_device_read(uf->uart_device, 0, &uf->rx_ch, 1))
  122. ;
  123. }
  124. if (uf->cfg.rs485_txd)
  125. uf->cfg.rs485_txd();
  126. rt_size_t wsize = rt_device_write(uf->uart_device, 0, data, size);
  127. if (uf->cfg.rs485_rxd)
  128. uf->cfg.rs485_rxd();
  129. uf->send_tick = rt_tick_get(); // 重置定时器
  130. if (model == WORK_TAKE_RELEASE)
  131. {
  132. rt_mutex_release(uf->dev_lock);
  133. }
  134. return wsize;
  135. }
  136. /**
  137. * @brief 接收串口数据
  138. *
  139. * 根据指定的工作模型,从串口框架中接收数据,并处理接收到的数据帧。
  140. *
  141. * @param model 工作模型
  142. * @param uf 串口框架对象
  143. * @param timeout_ms 超时时间(毫秒)
  144. * @param frame_handler 数据帧处理函数
  145. * @param out 输出缓冲区
  146. * @param out_max_size 输出缓冲区最大大小
  147. *
  148. * @return 错误码,RT_EOK 表示成功,其他值表示错误
  149. */
  150. static rt_err_t _receive(enum work_model model, uart_framework_t uf, rt_uint32_t timeout_ms,
  151. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  152. {
  153. // rt_memset(uf->rx_buf, 0, uf->cfg.max_frame_size);
  154. uf->rx_size = 0;
  155. uf->last_tick = rt_tick_get();
  156. while (1)
  157. {
  158. if (rt_sem_take(uf->rx_sem, rt_tick_from_millisecond(timeout_ms)) == RT_EOK)
  159. {
  160. if (model == WORK_TAKE_RELEASE)
  161. {
  162. rt_mutex_take(uf->dev_lock, RT_WAITING_FOREVER);
  163. }
  164. while (1)
  165. {
  166. while (rt_device_read(uf->uart_device, 0, &uf->rx_ch, 1))
  167. {
  168. uf->last_tick = rt_tick_get(); // 重置定时器
  169. if (uf->rx_size < uf->cfg.max_frame_size)
  170. {
  171. uf->rx_buf[uf->rx_size++] = uf->rx_ch;
  172. }
  173. }
  174. if (rt_tick_get() - uf->last_tick > rt_tick_from_millisecond(uf->cfg.frame_interval_ms))
  175. {
  176. if (uf->rx_size > 0)
  177. {
  178. if (out && out_max_size > 0)
  179. {
  180. rt_memcpy(out, uf->rx_buf, uf->rx_size > out_max_size ? out_max_size : uf->rx_size);
  181. }
  182. if (frame_handler)
  183. {
  184. rt_err_t err = frame_handler(uf->rx_buf, uf->rx_size);
  185. if (model == WORK_RELEASE || model == WORK_TAKE_RELEASE)
  186. {
  187. rt_mutex_release(uf->dev_lock);
  188. }
  189. return err;
  190. }
  191. else
  192. {
  193. if (model == WORK_RELEASE || model == WORK_TAKE_RELEASE)
  194. {
  195. rt_mutex_release(uf->dev_lock);
  196. }
  197. return RT_EOK;
  198. }
  199. }
  200. else
  201. {
  202. break;
  203. }
  204. }
  205. rt_thread_mdelay(10);
  206. }
  207. if (model == WORK_RELEASE || model == WORK_TAKE_RELEASE)
  208. {
  209. rt_mutex_release(uf->dev_lock);
  210. }
  211. }
  212. else
  213. {
  214. if (model == WORK_RELEASE)
  215. {
  216. rt_mutex_release(uf->dev_lock);
  217. }
  218. return -RT_ETIMEOUT;
  219. }
  220. }
  221. }
  222. /**
  223. * @brief 发送数据到UART框架
  224. *
  225. * 通过UART框架发送指定大小的数据。
  226. *
  227. * @param uf UART框架对象指针
  228. * @param data 要发送的数据指针
  229. * @param size 数据大小
  230. *
  231. * @return 发送的字节数
  232. */
  233. rt_size_t uart_framework_send(uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  234. {
  235. return _send(WORK_NORMAL, uf, data, size);
  236. }
  237. /**
  238. * @brief UART框架发送数据(独占)
  239. *
  240. * 通过UART框架发送指定大小的数据。
  241. *
  242. * @param uf UART框架对象
  243. * @param data 要发送的数据指针
  244. * @param size 要发送的数据大小
  245. *
  246. * @return 实际发送的数据大小
  247. */
  248. rt_size_t uart_framework_send_take(uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  249. {
  250. return _send(WORK_TAKE, uf, data, size);
  251. }
  252. /**
  253. * @brief UART框架发送数据(独占发送后释放)
  254. *
  255. * 通过UART框架发送指定大小的数据。
  256. *
  257. * @param uf UART框架对象指针
  258. * @param data 要发送的数据指针
  259. * @param size 要发送的数据大小
  260. *
  261. * @return 实际发送的字节数
  262. */
  263. rt_size_t uart_framework_send_take_release(uart_framework_t uf, rt_uint8_t *data, rt_size_t size)
  264. {
  265. return _send(WORK_TAKE_RELEASE, uf, data, size);
  266. }
  267. /**
  268. * @brief 接收UART框架数据
  269. *
  270. * 在给定的超时时间内,从UART框架中接收数据,并调用帧处理器处理接收到的数据。
  271. *
  272. * @param uf UART框架对象
  273. * @param timeout_ms 超时时间(毫秒)
  274. * @param frame_handler 帧处理器函数指针,用于处理接收到的数据
  275. * @param out 存储处理结果的缓冲区
  276. * @param out_max_size 缓冲区最大容量
  277. *
  278. * @return 返回错误码,表示操作是否成功
  279. */
  280. rt_err_t uart_framework_receive(uart_framework_t uf, rt_uint32_t timeout_ms,
  281. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  282. {
  283. return _receive(WORK_NORMAL, uf, timeout_ms, frame_handler, out, out_max_size);
  284. }
  285. /**
  286. * @brief UART 框架接收数据(接收后释放独占)
  287. *
  288. * 从 UART 框架收数据,通过回调函数处理接收到的数据帧。
  289. *
  290. * @param uf UART 框架对象
  291. * @param timeout_ms 超时时间(毫秒)
  292. * @param frame_handler 数据帧处理回调函数
  293. * @param out 存储处理结果的缓冲区
  294. * @param out_max_size 缓冲区最大大小
  295. *
  296. * @return 返回错误码,表示操作结果
  297. */
  298. rt_err_t uart_framework_receive_release(uart_framework_t uf, rt_uint32_t timeout_ms,
  299. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  300. {
  301. return _receive(WORK_RELEASE, uf, timeout_ms, frame_handler, out, out_max_size);
  302. }
  303. /**
  304. * @brief UART框架接收数据(独占接收后释放)
  305. *
  306. * 从UART框架中接收数据,并在处理完成后释放相关资源。
  307. *
  308. * @param uf UART框架指针
  309. * @param timeout_ms 超时时间(单位:毫秒)
  310. * @param frame_handler 帧处理函数指针
  311. * @param out 输出缓冲区指针
  312. * @param out_max_size 输出缓冲区最大大小
  313. *
  314. * @return 返回错误码,表示操作是否成功
  315. */
  316. rt_err_t uart_framework_receive_take_release(uart_framework_t uf, rt_uint32_t timeout_ms,
  317. rt_err_t (*frame_handler)(rt_uint8_t *data, rt_size_t size), rt_uint8_t *out, rt_size_t out_max_size)
  318. {
  319. return _receive(WORK_TAKE_RELEASE, uf, timeout_ms, frame_handler, out, out_max_size);
  320. }