kx.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. #define hydro_kx_AEAD_KEYBYTES hydro_hash_KEYBYTES
  2. #define hydro_kx_AEAD_MACBYTES 16
  3. #define hydro_kx_CONTEXT "hydro_kx"
  4. static void
  5. hydro_kx_aead_init(uint8_t aead_state[gimli_BLOCKBYTES], uint8_t k[hydro_kx_AEAD_KEYBYTES],
  6. hydro_kx_state *state)
  7. {
  8. static const uint8_t prefix[] = { 6, 'k', 'x', 'x', '2', '5', '6', 0 };
  9. hydro_hash_final(&state->h_st, k, hydro_kx_AEAD_KEYBYTES);
  10. mem_zero(aead_state + sizeof prefix, gimli_BLOCKBYTES - sizeof prefix);
  11. memcpy(aead_state, prefix, sizeof prefix);
  12. gimli_core_u8(aead_state, gimli_TAG_HEADER);
  13. COMPILER_ASSERT(hydro_kx_AEAD_KEYBYTES == 2 * gimli_RATE);
  14. mem_xor(aead_state, k, gimli_RATE);
  15. gimli_core_u8(aead_state, gimli_TAG_KEY);
  16. mem_xor(aead_state, k + gimli_RATE, gimli_RATE);
  17. gimli_core_u8(aead_state, gimli_TAG_KEY);
  18. }
  19. static void
  20. hydro_kx_aead_final(uint8_t *aead_state, const uint8_t key[hydro_kx_AEAD_KEYBYTES])
  21. {
  22. COMPILER_ASSERT(hydro_kx_AEAD_KEYBYTES == gimli_CAPACITY);
  23. mem_xor(aead_state + gimli_RATE, key, hydro_kx_AEAD_KEYBYTES);
  24. gimli_core_u8(aead_state, gimli_TAG_FINAL);
  25. mem_xor(aead_state + gimli_RATE, key, hydro_kx_AEAD_KEYBYTES);
  26. gimli_core_u8(aead_state, gimli_TAG_FINAL);
  27. }
  28. static void
  29. hydro_kx_aead_xor_enc(uint8_t aead_state[gimli_BLOCKBYTES], uint8_t *out, const uint8_t *in,
  30. size_t inlen)
  31. {
  32. size_t i;
  33. size_t leftover;
  34. for (i = 0; i < inlen / gimli_RATE; i++) {
  35. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, gimli_RATE);
  36. memcpy(aead_state, &out[i * gimli_RATE], gimli_RATE);
  37. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  38. }
  39. leftover = inlen % gimli_RATE;
  40. if (leftover != 0) {
  41. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, leftover);
  42. mem_cpy(aead_state, &out[i * gimli_RATE], leftover);
  43. }
  44. gimli_pad_u8(aead_state, leftover, gimli_DOMAIN_AEAD);
  45. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  46. }
  47. static void
  48. hydro_kx_aead_xor_dec(uint8_t aead_state[gimli_BLOCKBYTES], uint8_t *out, const uint8_t *in,
  49. size_t inlen)
  50. {
  51. size_t i;
  52. size_t leftover;
  53. for (i = 0; i < inlen / gimli_RATE; i++) {
  54. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, gimli_RATE);
  55. memcpy(aead_state, &in[i * gimli_RATE], gimli_RATE);
  56. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  57. }
  58. leftover = inlen % gimli_RATE;
  59. if (leftover != 0) {
  60. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, leftover);
  61. mem_cpy(aead_state, &in[i * gimli_RATE], leftover);
  62. }
  63. gimli_pad_u8(aead_state, leftover, gimli_DOMAIN_AEAD);
  64. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  65. }
  66. static void
  67. hydro_kx_aead_encrypt(hydro_kx_state *state, uint8_t *c, const uint8_t *m, size_t mlen)
  68. {
  69. _hydro_attr_aligned_(16) uint8_t aead_state[gimli_BLOCKBYTES];
  70. uint8_t k[hydro_kx_AEAD_KEYBYTES];
  71. uint8_t * mac = &c[0];
  72. uint8_t * ct = &c[hydro_kx_AEAD_MACBYTES];
  73. hydro_kx_aead_init(aead_state, k, state);
  74. hydro_kx_aead_xor_enc(aead_state, ct, m, mlen);
  75. hydro_kx_aead_final(aead_state, k);
  76. COMPILER_ASSERT(hydro_kx_AEAD_MACBYTES <= gimli_CAPACITY);
  77. memcpy(mac, aead_state + gimli_RATE, hydro_kx_AEAD_MACBYTES);
  78. hydro_hash_update(&state->h_st, c, mlen + hydro_kx_AEAD_MACBYTES);
  79. }
  80. static int hydro_kx_aead_decrypt(hydro_kx_state *state, uint8_t *m, const uint8_t *c,
  81. size_t clen) _hydro_attr_warn_unused_result_;
  82. static int
  83. hydro_kx_aead_decrypt(hydro_kx_state *state, uint8_t *m, const uint8_t *c, size_t clen)
  84. {
  85. _hydro_attr_aligned_(16) uint32_t int_state[gimli_BLOCKBYTES / 4];
  86. uint32_t pub_mac[hydro_kx_AEAD_MACBYTES / 4];
  87. uint8_t k[hydro_kx_AEAD_KEYBYTES];
  88. uint8_t * aead_state = (uint8_t *) (void *) int_state;
  89. const uint8_t * mac;
  90. const uint8_t * ct;
  91. size_t mlen;
  92. uint32_t cv;
  93. if (clen < hydro_kx_AEAD_MACBYTES) {
  94. return -1;
  95. }
  96. mac = &c[0];
  97. ct = &c[hydro_kx_AEAD_MACBYTES];
  98. mlen = clen - hydro_kx_AEAD_MACBYTES;
  99. memcpy(pub_mac, mac, sizeof pub_mac);
  100. hydro_kx_aead_init(aead_state, k, state);
  101. hydro_hash_update(&state->h_st, c, clen);
  102. hydro_kx_aead_xor_dec(aead_state, m, ct, mlen);
  103. hydro_kx_aead_final(aead_state, k);
  104. COMPILER_ASSERT(hydro_kx_AEAD_MACBYTES <= gimli_CAPACITY);
  105. COMPILER_ASSERT(gimli_RATE % 4 == 0);
  106. cv = hydro_mem_ct_cmp_u32(int_state + gimli_RATE / 4, pub_mac, hydro_kx_AEAD_MACBYTES / 4);
  107. hydro_mem_ct_zero_u32(int_state, gimli_BLOCKBYTES / 4);
  108. if (cv != 0) {
  109. mem_zero(m, mlen);
  110. return -1;
  111. }
  112. return 0;
  113. }
  114. /* -- */
  115. void
  116. hydro_kx_keygen(hydro_kx_keypair *static_kp)
  117. {
  118. hydro_random_buf(static_kp->sk, hydro_kx_SECRETKEYBYTES);
  119. if (hydro_x25519_scalarmult_base(static_kp->pk, static_kp->sk) != 0) {
  120. abort();
  121. }
  122. }
  123. void
  124. hydro_kx_keygen_deterministic(hydro_kx_keypair *static_kp, const uint8_t seed[hydro_kx_SEEDBYTES])
  125. {
  126. COMPILER_ASSERT(hydro_kx_SEEDBYTES >= hydro_random_SEEDBYTES);
  127. hydro_random_buf_deterministic(static_kp->sk, hydro_kx_SECRETKEYBYTES, seed);
  128. if (hydro_x25519_scalarmult_base(static_kp->pk, static_kp->sk) != 0) {
  129. abort();
  130. }
  131. }
  132. static void
  133. hydro_kx_init_state(hydro_kx_state *state, const char *name)
  134. {
  135. mem_zero(state, sizeof *state);
  136. hydro_hash_init(&state->h_st, hydro_kx_CONTEXT, NULL);
  137. hydro_hash_update(&state->h_st, name, strlen(name));
  138. hydro_hash_final(&state->h_st, NULL, 0);
  139. }
  140. static void
  141. hydro_kx_final(hydro_kx_state *state, uint8_t session_k1[hydro_kx_SESSIONKEYBYTES],
  142. uint8_t session_k2[hydro_kx_SESSIONKEYBYTES])
  143. {
  144. uint8_t kdf_key[hydro_kdf_KEYBYTES];
  145. hydro_hash_final(&state->h_st, kdf_key, sizeof kdf_key);
  146. hydro_kdf_derive_from_key(session_k1, hydro_kx_SESSIONKEYBYTES, 0, hydro_kx_CONTEXT, kdf_key);
  147. hydro_kdf_derive_from_key(session_k2, hydro_kx_SESSIONKEYBYTES, 1, hydro_kx_CONTEXT, kdf_key);
  148. }
  149. static int
  150. hydro_kx_dh(hydro_kx_state *state, const uint8_t sk[hydro_x25519_SECRETKEYBYTES],
  151. const uint8_t pk[hydro_x25519_PUBLICKEYBYTES])
  152. {
  153. uint8_t dh_result[hydro_x25519_BYTES];
  154. if (hydro_x25519_scalarmult(dh_result, sk, pk, 1) != 0) {
  155. return -1;
  156. }
  157. hydro_hash_update(&state->h_st, dh_result, hydro_x25519_BYTES);
  158. return 0;
  159. }
  160. static void
  161. hydro_kx_eph_keygen(hydro_kx_state *state, hydro_kx_keypair *kp)
  162. {
  163. hydro_kx_keygen(kp);
  164. hydro_hash_update(&state->h_st, kp->pk, sizeof kp->pk);
  165. }
  166. /* NOISE_N */
  167. int
  168. hydro_kx_n_1(hydro_kx_session_keypair *kp, uint8_t packet1[hydro_kx_N_PACKET1BYTES],
  169. const uint8_t psk[hydro_kx_PSKBYTES],
  170. const uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES])
  171. {
  172. hydro_kx_state state;
  173. uint8_t * packet1_eph_pk = &packet1[0];
  174. uint8_t * packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  175. if (psk == NULL) {
  176. psk = zero;
  177. }
  178. hydro_kx_init_state(&state, "Noise_Npsk0_hydro1");
  179. hydro_hash_update(&state.h_st, peer_static_pk, hydro_x25519_PUBLICKEYBYTES);
  180. hydro_hash_update(&state.h_st, psk, hydro_kx_PSKBYTES);
  181. hydro_kx_eph_keygen(&state, &state.hs.eph_kp);
  182. if (hydro_kx_dh(&state, state.hs.eph_kp.sk, peer_static_pk) != 0) {
  183. return -1;
  184. }
  185. hydro_kx_aead_encrypt(&state, packet1_mac, NULL, 0);
  186. memcpy(packet1_eph_pk, state.hs.eph_kp.pk, sizeof state.hs.eph_kp.pk);
  187. hydro_kx_final(&state, kp->rx, kp->tx);
  188. return 0;
  189. }
  190. int
  191. hydro_kx_n_2(hydro_kx_session_keypair *kp, const uint8_t packet1[hydro_kx_N_PACKET1BYTES],
  192. const uint8_t psk[hydro_kx_PSKBYTES], const hydro_kx_keypair *static_kp)
  193. {
  194. hydro_kx_state state;
  195. const uint8_t *peer_eph_pk = &packet1[0];
  196. const uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  197. if (psk == NULL) {
  198. psk = zero;
  199. }
  200. hydro_kx_init_state(&state, "Noise_Npsk0_hydro1");
  201. hydro_hash_update(&state.h_st, static_kp->pk, hydro_kx_PUBLICKEYBYTES);
  202. hydro_hash_update(&state.h_st, psk, hydro_kx_PSKBYTES);
  203. hydro_hash_update(&state.h_st, peer_eph_pk, hydro_x25519_PUBLICKEYBYTES);
  204. if (hydro_kx_dh(&state, static_kp->sk, peer_eph_pk) != 0) {
  205. return -1;
  206. }
  207. if (hydro_kx_aead_decrypt(&state, NULL, packet1_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  208. return -1;
  209. }
  210. hydro_kx_final(&state, kp->tx, kp->rx);
  211. return 0;
  212. }
  213. /* NOISE_KK */
  214. int
  215. hydro_kx_kk_1(hydro_kx_state *state, uint8_t packet1[hydro_kx_KK_PACKET1BYTES],
  216. const uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  217. const hydro_kx_keypair *static_kp)
  218. {
  219. uint8_t *packet1_eph_pk = &packet1[0];
  220. uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  221. hydro_kx_init_state(state, "Noise_KK_hydro1");
  222. hydro_hash_update(&state->h_st, static_kp->pk, hydro_kx_PUBLICKEYBYTES);
  223. hydro_hash_update(&state->h_st, peer_static_pk, hydro_kx_PUBLICKEYBYTES);
  224. hydro_kx_eph_keygen(state, &state->hs.eph_kp);
  225. if (hydro_kx_dh(state, state->hs.eph_kp.sk, peer_static_pk) != 0) {
  226. return -1;
  227. }
  228. if (hydro_kx_dh(state, static_kp->sk, peer_static_pk) != 0) {
  229. return -1;
  230. }
  231. hydro_kx_aead_encrypt(state, packet1_mac, NULL, 0);
  232. memcpy(packet1_eph_pk, state->hs.eph_kp.pk, sizeof state->hs.eph_kp.pk);
  233. return 0;
  234. }
  235. int
  236. hydro_kx_kk_2(hydro_kx_session_keypair *kp, uint8_t packet2[hydro_kx_KK_PACKET2BYTES],
  237. const uint8_t packet1[hydro_kx_KK_PACKET1BYTES],
  238. const uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  239. const hydro_kx_keypair *static_kp)
  240. {
  241. hydro_kx_state state;
  242. const uint8_t *peer_eph_pk = &packet1[0];
  243. const uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  244. uint8_t * packet2_eph_pk = &packet2[0];
  245. uint8_t * packet2_mac = &packet2[hydro_kx_PUBLICKEYBYTES];
  246. hydro_kx_init_state(&state, "Noise_KK_hydro1");
  247. hydro_hash_update(&state.h_st, peer_static_pk, hydro_kx_PUBLICKEYBYTES);
  248. hydro_hash_update(&state.h_st, static_kp->pk, hydro_kx_PUBLICKEYBYTES);
  249. hydro_hash_update(&state.h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  250. if (hydro_kx_dh(&state, static_kp->sk, peer_eph_pk) != 0) {
  251. return -1;
  252. }
  253. if (hydro_kx_dh(&state, static_kp->sk, peer_static_pk) != 0) {
  254. return -1;
  255. }
  256. if (hydro_kx_aead_decrypt(&state, NULL, packet1_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  257. return -1;
  258. }
  259. hydro_kx_eph_keygen(&state, &state.hs.eph_kp);
  260. if (hydro_kx_dh(&state, state.hs.eph_kp.sk, peer_eph_pk) != 0) {
  261. return -1;
  262. }
  263. if (hydro_kx_dh(&state, state.hs.eph_kp.sk, peer_static_pk) != 0) {
  264. return -1;
  265. }
  266. hydro_kx_aead_encrypt(&state, packet2_mac, NULL, 0);
  267. hydro_kx_final(&state, kp->tx, kp->rx);
  268. memcpy(packet2_eph_pk, state.hs.eph_kp.pk, sizeof state.hs.eph_kp.pk);
  269. return 0;
  270. }
  271. int
  272. hydro_kx_kk_3(hydro_kx_state *state, hydro_kx_session_keypair *kp,
  273. const uint8_t packet2[hydro_kx_KK_PACKET2BYTES], const hydro_kx_keypair *static_kp)
  274. {
  275. const uint8_t *peer_eph_pk = packet2;
  276. const uint8_t *packet2_mac = &packet2[hydro_kx_PUBLICKEYBYTES];
  277. hydro_hash_update(&state->h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  278. if (hydro_kx_dh(state, state->hs.eph_kp.sk, peer_eph_pk) != 0) {
  279. return -1;
  280. }
  281. if (hydro_kx_dh(state, static_kp->sk, peer_eph_pk) != 0) {
  282. return -1;
  283. }
  284. if (hydro_kx_aead_decrypt(state, NULL, packet2_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  285. return -1;
  286. }
  287. hydro_kx_final(state, kp->rx, kp->tx);
  288. return 0;
  289. }
  290. /* NOISE_XX */
  291. int
  292. hydro_kx_xx_1(hydro_kx_state *state, uint8_t packet1[hydro_kx_XX_PACKET1BYTES],
  293. const uint8_t psk[hydro_kx_PSKBYTES])
  294. {
  295. uint8_t *packet1_eph_pk = &packet1[0];
  296. uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  297. if (psk == NULL) {
  298. psk = zero;
  299. }
  300. hydro_kx_init_state(state, "Noise_XXpsk0+psk3_hydro1");
  301. hydro_kx_eph_keygen(state, &state->hs.eph_kp);
  302. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  303. memcpy(packet1_eph_pk, state->hs.eph_kp.pk, sizeof state->hs.eph_kp.pk);
  304. hydro_kx_aead_encrypt(state, packet1_mac, NULL, 0);
  305. return 0;
  306. }
  307. int
  308. hydro_kx_xx_2(hydro_kx_state *state, uint8_t packet2[hydro_kx_XX_PACKET2BYTES],
  309. const uint8_t packet1[hydro_kx_XX_PACKET1BYTES], const uint8_t psk[hydro_kx_PSKBYTES],
  310. const hydro_kx_keypair *static_kp)
  311. {
  312. const uint8_t *peer_eph_pk = &packet1[0];
  313. const uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  314. uint8_t * packet2_eph_pk = &packet2[0];
  315. uint8_t * packet2_enc_static_pk = &packet2[hydro_kx_PUBLICKEYBYTES];
  316. uint8_t * packet2_mac =
  317. &packet2[hydro_kx_PUBLICKEYBYTES + hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  318. if (psk == NULL) {
  319. psk = zero;
  320. }
  321. hydro_kx_init_state(state, "Noise_XXpsk0+psk3_hydro1");
  322. hydro_hash_update(&state->h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  323. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  324. if (hydro_kx_aead_decrypt(state, NULL, packet1_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  325. return -1;
  326. }
  327. hydro_kx_eph_keygen(state, &state->hs.eph_kp);
  328. if (hydro_kx_dh(state, state->hs.eph_kp.sk, peer_eph_pk) != 0) {
  329. return -1;
  330. }
  331. hydro_kx_aead_encrypt(state, packet2_enc_static_pk, static_kp->pk, sizeof static_kp->pk);
  332. if (hydro_kx_dh(state, static_kp->sk, peer_eph_pk) != 0) {
  333. return -1;
  334. }
  335. hydro_kx_aead_encrypt(state, packet2_mac, NULL, 0);
  336. memcpy(packet2_eph_pk, state->hs.eph_kp.pk, sizeof state->hs.eph_kp.pk);
  337. return 0;
  338. }
  339. int
  340. hydro_kx_xx_3(hydro_kx_state *state, hydro_kx_session_keypair *kp,
  341. uint8_t packet3[hydro_kx_XX_PACKET3BYTES],
  342. uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  343. const uint8_t packet2[hydro_kx_XX_PACKET2BYTES], const uint8_t psk[hydro_kx_PSKBYTES],
  344. const hydro_kx_keypair *static_kp)
  345. {
  346. uint8_t peer_static_pk_[hydro_kx_PUBLICKEYBYTES];
  347. const uint8_t *peer_eph_pk = &packet2[0];
  348. const uint8_t *peer_enc_static_pk = &packet2[hydro_kx_PUBLICKEYBYTES];
  349. const uint8_t *packet2_mac =
  350. &packet2[hydro_kx_PUBLICKEYBYTES + hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  351. uint8_t *packet3_enc_static_pk = &packet3[0];
  352. uint8_t *packet3_mac = &packet3[hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  353. if (psk == NULL) {
  354. psk = zero;
  355. }
  356. if (peer_static_pk == NULL) {
  357. peer_static_pk = peer_static_pk_;
  358. }
  359. hydro_hash_update(&state->h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  360. if (hydro_kx_dh(state, state->hs.eph_kp.sk, peer_eph_pk) != 0) {
  361. return -1;
  362. }
  363. if (hydro_kx_aead_decrypt(state, peer_static_pk, peer_enc_static_pk,
  364. hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES) != 0) {
  365. return -1;
  366. }
  367. if (hydro_kx_dh(state, state->hs.eph_kp.sk, peer_static_pk) != 0) {
  368. return -1;
  369. }
  370. if (hydro_kx_aead_decrypt(state, NULL, packet2_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  371. return -1;
  372. }
  373. hydro_kx_aead_encrypt(state, packet3_enc_static_pk, static_kp->pk, sizeof static_kp->pk);
  374. if (hydro_kx_dh(state, static_kp->sk, peer_eph_pk) != 0) {
  375. return -1;
  376. }
  377. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  378. hydro_kx_aead_encrypt(state, packet3_mac, NULL, 0);
  379. hydro_kx_final(state, kp->rx, kp->tx);
  380. return 0;
  381. }
  382. int
  383. hydro_kx_xx_4(hydro_kx_state *state, hydro_kx_session_keypair *kp,
  384. uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  385. const uint8_t packet3[hydro_kx_XX_PACKET3BYTES], const uint8_t psk[hydro_kx_PSKBYTES])
  386. {
  387. uint8_t peer_static_pk_[hydro_kx_PUBLICKEYBYTES];
  388. const uint8_t *peer_enc_static_pk = &packet3[0];
  389. const uint8_t *packet3_mac = &packet3[hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  390. if (psk == NULL) {
  391. psk = zero;
  392. }
  393. if (peer_static_pk == NULL) {
  394. peer_static_pk = peer_static_pk_;
  395. }
  396. if (hydro_kx_aead_decrypt(state, peer_static_pk, peer_enc_static_pk,
  397. hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES) != 0) {
  398. return -1;
  399. }
  400. if (hydro_kx_dh(state, state->hs.eph_kp.sk, peer_static_pk) != 0) {
  401. return -1;
  402. }
  403. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  404. if (hydro_kx_aead_decrypt(state, NULL, packet3_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  405. return -1;
  406. }
  407. hydro_kx_final(state, kp->tx, kp->rx);
  408. return 0;
  409. }