kx.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. #define hydro_kx_AEAD_KEYBYTES hydro_hash_KEYBYTES
  2. #define hydro_kx_AEAD_MACBYTES 16
  3. #define hydro_kx_CONTEXT "hydro_kx"
  4. static void
  5. hydro_kx_aead_init(uint8_t aead_state[gimli_BLOCKBYTES], uint8_t k[hydro_kx_AEAD_KEYBYTES],
  6. hydro_kx_state *state)
  7. {
  8. static const uint8_t prefix[] = { 6, 'k', 'x', 'x', '2', '5', '6', 0 };
  9. hydro_hash_final(&state->h_st, k, hydro_kx_AEAD_KEYBYTES);
  10. mem_zero(aead_state + sizeof prefix, gimli_BLOCKBYTES - sizeof prefix);
  11. memcpy(aead_state, prefix, sizeof prefix);
  12. gimli_core_u8(aead_state, gimli_TAG_HEADER);
  13. COMPILER_ASSERT(hydro_kx_AEAD_KEYBYTES == 2 * gimli_RATE);
  14. mem_xor(aead_state, k, gimli_RATE);
  15. gimli_core_u8(aead_state, gimli_TAG_KEY);
  16. mem_xor(aead_state, k + gimli_RATE, gimli_RATE);
  17. gimli_core_u8(aead_state, gimli_TAG_KEY);
  18. }
  19. static void
  20. hydro_kx_aead_final(uint8_t *aead_state, const uint8_t key[hydro_kx_AEAD_KEYBYTES])
  21. {
  22. COMPILER_ASSERT(hydro_kx_AEAD_KEYBYTES == gimli_CAPACITY);
  23. mem_xor(aead_state + gimli_RATE, key, hydro_kx_AEAD_KEYBYTES);
  24. gimli_core_u8(aead_state, gimli_TAG_FINAL);
  25. mem_xor(aead_state + gimli_RATE, key, hydro_kx_AEAD_KEYBYTES);
  26. gimli_core_u8(aead_state, gimli_TAG_FINAL);
  27. }
  28. static void
  29. hydro_kx_aead_xor_enc(uint8_t aead_state[gimli_BLOCKBYTES], uint8_t *out, const uint8_t *in,
  30. size_t inlen)
  31. {
  32. size_t i;
  33. size_t leftover;
  34. for (i = 0; i < inlen / gimli_RATE; i++) {
  35. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, gimli_RATE);
  36. memcpy(aead_state, &out[i * gimli_RATE], gimli_RATE);
  37. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  38. }
  39. leftover = inlen % gimli_RATE;
  40. if (leftover != 0) {
  41. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, leftover);
  42. mem_cpy(aead_state, &out[i * gimli_RATE], leftover);
  43. }
  44. gimli_pad_u8(aead_state, leftover, gimli_DOMAIN_AEAD);
  45. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  46. }
  47. static void
  48. hydro_kx_aead_xor_dec(uint8_t aead_state[gimli_BLOCKBYTES], uint8_t *out, const uint8_t *in,
  49. size_t inlen)
  50. {
  51. size_t i;
  52. size_t leftover;
  53. for (i = 0; i < inlen / gimli_RATE; i++) {
  54. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, gimli_RATE);
  55. memcpy(aead_state, &in[i * gimli_RATE], gimli_RATE);
  56. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  57. }
  58. leftover = inlen % gimli_RATE;
  59. if (leftover != 0) {
  60. mem_xor2(&out[i * gimli_RATE], &in[i * gimli_RATE], aead_state, leftover);
  61. mem_cpy(aead_state, &in[i * gimli_RATE], leftover);
  62. }
  63. gimli_pad_u8(aead_state, leftover, gimli_DOMAIN_AEAD);
  64. gimli_core_u8(aead_state, gimli_TAG_PAYLOAD);
  65. }
  66. static void
  67. hydro_kx_aead_encrypt(hydro_kx_state *state, uint8_t *c, const uint8_t *m, size_t mlen)
  68. {
  69. _hydro_attr_aligned_(16) uint8_t aead_state[gimli_BLOCKBYTES];
  70. uint8_t k[hydro_kx_AEAD_KEYBYTES];
  71. uint8_t * mac = &c[0];
  72. uint8_t * ct = &c[hydro_kx_AEAD_MACBYTES];
  73. hydro_kx_aead_init(aead_state, k, state);
  74. hydro_kx_aead_xor_enc(aead_state, ct, m, mlen);
  75. hydro_kx_aead_final(aead_state, k);
  76. COMPILER_ASSERT(hydro_kx_AEAD_MACBYTES <= gimli_CAPACITY);
  77. memcpy(mac, aead_state + gimli_RATE, hydro_kx_AEAD_MACBYTES);
  78. hydro_hash_update(&state->h_st, c, mlen + hydro_kx_AEAD_MACBYTES);
  79. }
  80. static int hydro_kx_aead_decrypt(hydro_kx_state *state, uint8_t *m, const uint8_t *c,
  81. size_t clen) _hydro_attr_warn_unused_result_;
  82. static int
  83. hydro_kx_aead_decrypt(hydro_kx_state *state, uint8_t *m, const uint8_t *c, size_t clen)
  84. {
  85. _hydro_attr_aligned_(16) uint32_t int_state[gimli_BLOCKBYTES / 4];
  86. uint32_t pub_mac[hydro_kx_AEAD_MACBYTES / 4];
  87. uint8_t k[hydro_kx_AEAD_KEYBYTES];
  88. uint8_t * aead_state = (uint8_t *) (void *) int_state;
  89. const uint8_t * mac;
  90. const uint8_t * ct;
  91. size_t mlen;
  92. uint32_t cv;
  93. if (clen < hydro_kx_AEAD_MACBYTES) {
  94. return -1;
  95. }
  96. mac = &c[0];
  97. ct = &c[hydro_kx_AEAD_MACBYTES];
  98. mlen = clen - hydro_kx_AEAD_MACBYTES;
  99. memcpy(pub_mac, mac, sizeof pub_mac);
  100. hydro_kx_aead_init(aead_state, k, state);
  101. hydro_hash_update(&state->h_st, c, clen);
  102. hydro_kx_aead_xor_dec(aead_state, m, ct, mlen);
  103. hydro_kx_aead_final(aead_state, k);
  104. COMPILER_ASSERT(hydro_kx_AEAD_MACBYTES <= gimli_CAPACITY);
  105. COMPILER_ASSERT(gimli_RATE % 4 == 0);
  106. cv = hydro_mem_ct_cmp_u32(int_state + gimli_RATE / 4, pub_mac, hydro_kx_AEAD_MACBYTES / 4);
  107. hydro_mem_ct_zero_u32(int_state, gimli_BLOCKBYTES / 4);
  108. if (cv != 0) {
  109. mem_zero(m, mlen);
  110. return -1;
  111. }
  112. return 0;
  113. }
  114. /* -- */
  115. void
  116. hydro_kx_keygen(hydro_kx_keypair *static_kp)
  117. {
  118. hydro_random_buf(static_kp->sk, hydro_kx_SECRETKEYBYTES);
  119. if (hydro_x25519_scalarmult_base(static_kp->pk, static_kp->sk) != 0) {
  120. abort();
  121. }
  122. }
  123. void
  124. hydro_kx_keygen_deterministic(hydro_kx_keypair *static_kp, const uint8_t seed[hydro_kx_SEEDBYTES])
  125. {
  126. COMPILER_ASSERT(hydro_kx_SEEDBYTES >= hydro_random_SEEDBYTES);
  127. hydro_random_buf_deterministic(static_kp->sk, hydro_kx_SECRETKEYBYTES, seed);
  128. if (hydro_x25519_scalarmult_base(static_kp->pk, static_kp->sk) != 0) {
  129. abort();
  130. }
  131. }
  132. static void
  133. hydro_kx_init_state(hydro_kx_state *state, const char *name)
  134. {
  135. mem_zero(state, sizeof *state);
  136. hydro_hash_init(&state->h_st, hydro_kx_CONTEXT, NULL);
  137. hydro_hash_update(&state->h_st, name, strlen(name));
  138. hydro_hash_final(&state->h_st, NULL, 0);
  139. }
  140. static void
  141. hydro_kx_final(hydro_kx_state *state, uint8_t session_k1[hydro_kx_SESSIONKEYBYTES],
  142. uint8_t session_k2[hydro_kx_SESSIONKEYBYTES])
  143. {
  144. uint8_t kdf_key[hydro_kdf_KEYBYTES];
  145. hydro_hash_final(&state->h_st, kdf_key, sizeof kdf_key);
  146. hydro_kdf_derive_from_key(session_k1, hydro_kx_SESSIONKEYBYTES, 0, hydro_kx_CONTEXT, kdf_key);
  147. hydro_kdf_derive_from_key(session_k2, hydro_kx_SESSIONKEYBYTES, 1, hydro_kx_CONTEXT, kdf_key);
  148. }
  149. static int
  150. hydro_kx_dh(hydro_kx_state *state, const uint8_t sk[hydro_x25519_SECRETKEYBYTES],
  151. const uint8_t pk[hydro_x25519_PUBLICKEYBYTES])
  152. {
  153. uint8_t dh_result[hydro_x25519_BYTES];
  154. if (hydro_x25519_scalarmult(dh_result, sk, pk, 1) != 0) {
  155. return -1;
  156. }
  157. hydro_hash_update(&state->h_st, dh_result, hydro_x25519_BYTES);
  158. return 0;
  159. }
  160. static void
  161. hydro_kx_eph_keygen(hydro_kx_state *state, hydro_kx_keypair *kp)
  162. {
  163. hydro_kx_keygen(kp);
  164. hydro_hash_update(&state->h_st, kp->pk, sizeof kp->pk);
  165. }
  166. /* NOISE_N */
  167. int
  168. hydro_kx_n_1(hydro_kx_session_keypair *kp, uint8_t packet1[hydro_kx_N_PACKET1BYTES],
  169. const uint8_t psk[hydro_kx_PSKBYTES],
  170. const uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES])
  171. {
  172. hydro_kx_state state;
  173. uint8_t * packet1_eph_pk = &packet1[0];
  174. uint8_t * packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  175. if (psk == NULL) {
  176. psk = zero;
  177. }
  178. hydro_kx_init_state(&state, "Noise_Npsk0_hydro1");
  179. hydro_hash_update(&state.h_st, peer_static_pk, hydro_x25519_PUBLICKEYBYTES);
  180. hydro_hash_update(&state.h_st, psk, hydro_kx_PSKBYTES);
  181. hydro_kx_eph_keygen(&state, &state.eph_kp);
  182. if (hydro_kx_dh(&state, state.eph_kp.sk, peer_static_pk) != 0) {
  183. return -1;
  184. }
  185. hydro_kx_aead_encrypt(&state, packet1_mac, NULL, 0);
  186. memcpy(packet1_eph_pk, state.eph_kp.pk, sizeof state.eph_kp.pk);
  187. hydro_kx_final(&state, kp->rx, kp->tx);
  188. return 0;
  189. }
  190. int
  191. hydro_kx_n_2(hydro_kx_session_keypair *kp, const uint8_t packet1[hydro_kx_N_PACKET1BYTES],
  192. const uint8_t psk[hydro_kx_PSKBYTES], const hydro_kx_keypair *static_kp)
  193. {
  194. hydro_kx_state state;
  195. const uint8_t *peer_eph_pk = &packet1[0];
  196. const uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  197. if (psk == NULL) {
  198. psk = zero;
  199. }
  200. hydro_kx_init_state(&state, "Noise_Npsk0_hydro1");
  201. hydro_hash_update(&state.h_st, static_kp->pk, hydro_kx_PUBLICKEYBYTES);
  202. hydro_hash_update(&state.h_st, psk, hydro_kx_PSKBYTES);
  203. hydro_hash_update(&state.h_st, peer_eph_pk, hydro_x25519_PUBLICKEYBYTES);
  204. if (hydro_kx_dh(&state, static_kp->sk, peer_eph_pk) != 0 ||
  205. hydro_kx_aead_decrypt(&state, NULL, packet1_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  206. return -1;
  207. }
  208. hydro_kx_final(&state, kp->tx, kp->rx);
  209. return 0;
  210. }
  211. /* NOISE_KK */
  212. int
  213. hydro_kx_kk_1(hydro_kx_state *state, uint8_t packet1[hydro_kx_KK_PACKET1BYTES],
  214. const uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  215. const hydro_kx_keypair *static_kp)
  216. {
  217. uint8_t *packet1_eph_pk = &packet1[0];
  218. uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  219. hydro_kx_init_state(state, "Noise_KK_hydro1");
  220. hydro_hash_update(&state->h_st, static_kp->pk, hydro_kx_PUBLICKEYBYTES);
  221. hydro_hash_update(&state->h_st, peer_static_pk, hydro_kx_PUBLICKEYBYTES);
  222. hydro_kx_eph_keygen(state, &state->eph_kp);
  223. if (hydro_kx_dh(state, state->eph_kp.sk, peer_static_pk) != 0 ||
  224. hydro_kx_dh(state, static_kp->sk, peer_static_pk) != 0) {
  225. return -1;
  226. }
  227. hydro_kx_aead_encrypt(state, packet1_mac, NULL, 0);
  228. memcpy(packet1_eph_pk, state->eph_kp.pk, sizeof state->eph_kp.pk);
  229. return 0;
  230. }
  231. int
  232. hydro_kx_kk_2(hydro_kx_session_keypair *kp, uint8_t packet2[hydro_kx_KK_PACKET2BYTES],
  233. const uint8_t packet1[hydro_kx_KK_PACKET1BYTES],
  234. const uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  235. const hydro_kx_keypair *static_kp)
  236. {
  237. hydro_kx_state state;
  238. const uint8_t *peer_eph_pk = &packet1[0];
  239. const uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  240. uint8_t * packet2_eph_pk = &packet2[0];
  241. uint8_t * packet2_mac = &packet2[hydro_kx_PUBLICKEYBYTES];
  242. hydro_kx_init_state(&state, "Noise_KK_hydro1");
  243. hydro_hash_update(&state.h_st, peer_static_pk, hydro_kx_PUBLICKEYBYTES);
  244. hydro_hash_update(&state.h_st, static_kp->pk, hydro_kx_PUBLICKEYBYTES);
  245. hydro_hash_update(&state.h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  246. if (hydro_kx_dh(&state, static_kp->sk, peer_eph_pk) != 0 ||
  247. hydro_kx_dh(&state, static_kp->sk, peer_static_pk) != 0 ||
  248. hydro_kx_aead_decrypt(&state, NULL, packet1_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  249. return -1;
  250. }
  251. hydro_kx_eph_keygen(&state, &state.eph_kp);
  252. if (hydro_kx_dh(&state, state.eph_kp.sk, peer_eph_pk) != 0 ||
  253. hydro_kx_dh(&state, state.eph_kp.sk, peer_static_pk) != 0) {
  254. return -1;
  255. }
  256. hydro_kx_aead_encrypt(&state, packet2_mac, NULL, 0);
  257. hydro_kx_final(&state, kp->tx, kp->rx);
  258. memcpy(packet2_eph_pk, state.eph_kp.pk, sizeof state.eph_kp.pk);
  259. return 0;
  260. }
  261. int
  262. hydro_kx_kk_3(hydro_kx_state *state, hydro_kx_session_keypair *kp,
  263. const uint8_t packet2[hydro_kx_KK_PACKET2BYTES], const hydro_kx_keypair *static_kp)
  264. {
  265. const uint8_t *peer_eph_pk = packet2;
  266. const uint8_t *packet2_mac = &packet2[hydro_kx_PUBLICKEYBYTES];
  267. hydro_hash_update(&state->h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  268. if (hydro_kx_dh(state, state->eph_kp.sk, peer_eph_pk) != 0 ||
  269. hydro_kx_dh(state, static_kp->sk, peer_eph_pk) != 0) {
  270. return -1;
  271. }
  272. if (hydro_kx_aead_decrypt(state, NULL, packet2_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  273. return -1;
  274. }
  275. hydro_kx_final(state, kp->rx, kp->tx);
  276. return 0;
  277. }
  278. /* NOISE_XX */
  279. int
  280. hydro_kx_xx_1(hydro_kx_state *state, uint8_t packet1[hydro_kx_XX_PACKET1BYTES],
  281. const uint8_t psk[hydro_kx_PSKBYTES])
  282. {
  283. uint8_t *packet1_eph_pk = &packet1[0];
  284. uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  285. if (psk == NULL) {
  286. psk = zero;
  287. }
  288. hydro_kx_init_state(state, "Noise_XXpsk0+psk3_hydro1");
  289. hydro_kx_eph_keygen(state, &state->eph_kp);
  290. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  291. memcpy(packet1_eph_pk, state->eph_kp.pk, sizeof state->eph_kp.pk);
  292. hydro_kx_aead_encrypt(state, packet1_mac, NULL, 0);
  293. return 0;
  294. }
  295. int
  296. hydro_kx_xx_2(hydro_kx_state *state, uint8_t packet2[hydro_kx_XX_PACKET2BYTES],
  297. const uint8_t packet1[hydro_kx_XX_PACKET1BYTES], const uint8_t psk[hydro_kx_PSKBYTES],
  298. const hydro_kx_keypair *static_kp)
  299. {
  300. const uint8_t *peer_eph_pk = &packet1[0];
  301. const uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  302. uint8_t * packet2_eph_pk = &packet2[0];
  303. uint8_t * packet2_enc_static_pk = &packet2[hydro_kx_PUBLICKEYBYTES];
  304. uint8_t * packet2_mac =
  305. &packet2[hydro_kx_PUBLICKEYBYTES + hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  306. if (psk == NULL) {
  307. psk = zero;
  308. }
  309. hydro_kx_init_state(state, "Noise_XXpsk0+psk3_hydro1");
  310. hydro_hash_update(&state->h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  311. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  312. if (hydro_kx_aead_decrypt(state, NULL, packet1_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  313. return -1;
  314. }
  315. hydro_kx_eph_keygen(state, &state->eph_kp);
  316. if (hydro_kx_dh(state, state->eph_kp.sk, peer_eph_pk) != 0) {
  317. return -1;
  318. }
  319. hydro_kx_aead_encrypt(state, packet2_enc_static_pk, static_kp->pk, sizeof static_kp->pk);
  320. if (hydro_kx_dh(state, static_kp->sk, peer_eph_pk) != 0) {
  321. return -1;
  322. }
  323. hydro_kx_aead_encrypt(state, packet2_mac, NULL, 0);
  324. memcpy(packet2_eph_pk, state->eph_kp.pk, sizeof state->eph_kp.pk);
  325. return 0;
  326. }
  327. int
  328. hydro_kx_xx_3(hydro_kx_state *state, hydro_kx_session_keypair *kp,
  329. uint8_t packet3[hydro_kx_XX_PACKET3BYTES],
  330. uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  331. const uint8_t packet2[hydro_kx_XX_PACKET2BYTES], const uint8_t psk[hydro_kx_PSKBYTES],
  332. const hydro_kx_keypair *static_kp)
  333. {
  334. uint8_t peer_static_pk_[hydro_kx_PUBLICKEYBYTES];
  335. const uint8_t *peer_eph_pk = &packet2[0];
  336. const uint8_t *peer_enc_static_pk = &packet2[hydro_kx_PUBLICKEYBYTES];
  337. const uint8_t *packet2_mac =
  338. &packet2[hydro_kx_PUBLICKEYBYTES + hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  339. uint8_t *packet3_enc_static_pk = &packet3[0];
  340. uint8_t *packet3_mac = &packet3[hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  341. if (psk == NULL) {
  342. psk = zero;
  343. }
  344. if (peer_static_pk == NULL) {
  345. peer_static_pk = peer_static_pk_;
  346. }
  347. hydro_hash_update(&state->h_st, peer_eph_pk, hydro_kx_PUBLICKEYBYTES);
  348. if (hydro_kx_dh(state, state->eph_kp.sk, peer_eph_pk) != 0 ||
  349. hydro_kx_aead_decrypt(state, peer_static_pk, peer_enc_static_pk,
  350. hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES) != 0 ||
  351. hydro_kx_dh(state, state->eph_kp.sk, peer_static_pk) != 0 ||
  352. hydro_kx_aead_decrypt(state, NULL, packet2_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  353. return -1;
  354. }
  355. hydro_kx_aead_encrypt(state, packet3_enc_static_pk, static_kp->pk, sizeof static_kp->pk);
  356. if (hydro_kx_dh(state, static_kp->sk, peer_eph_pk) != 0) {
  357. return -1;
  358. }
  359. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  360. hydro_kx_aead_encrypt(state, packet3_mac, NULL, 0);
  361. hydro_kx_final(state, kp->rx, kp->tx);
  362. return 0;
  363. }
  364. int
  365. hydro_kx_xx_4(hydro_kx_state *state, hydro_kx_session_keypair *kp,
  366. uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES],
  367. const uint8_t packet3[hydro_kx_XX_PACKET3BYTES], const uint8_t psk[hydro_kx_PSKBYTES])
  368. {
  369. uint8_t peer_static_pk_[hydro_kx_PUBLICKEYBYTES];
  370. const uint8_t *peer_enc_static_pk = &packet3[0];
  371. const uint8_t *packet3_mac = &packet3[hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES];
  372. if (psk == NULL) {
  373. psk = zero;
  374. }
  375. if (peer_static_pk == NULL) {
  376. peer_static_pk = peer_static_pk_;
  377. }
  378. if (hydro_kx_aead_decrypt(state, peer_static_pk, peer_enc_static_pk,
  379. hydro_kx_PUBLICKEYBYTES + hydro_kx_AEAD_MACBYTES) != 0 ||
  380. hydro_kx_dh(state, state->eph_kp.sk, peer_static_pk) != 0) {
  381. return -1;
  382. }
  383. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  384. if (hydro_kx_aead_decrypt(state, NULL, packet3_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  385. return -1;
  386. }
  387. hydro_kx_final(state, kp->tx, kp->rx);
  388. return 0;
  389. }
  390. /* NOISE_NK */
  391. int
  392. hydro_kx_nk_1(hydro_kx_state *state, uint8_t packet1[hydro_kx_NK_PACKET1BYTES],
  393. const uint8_t psk[hydro_kx_PSKBYTES],
  394. const uint8_t peer_static_pk[hydro_kx_PUBLICKEYBYTES])
  395. {
  396. uint8_t *packet1_eph_pk = &packet1[0];
  397. uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  398. if (psk == NULL) {
  399. psk = zero;
  400. }
  401. hydro_kx_init_state(state, "Noise_NKpsk0_hydro1");
  402. hydro_hash_update(&state->h_st, peer_static_pk, hydro_x25519_PUBLICKEYBYTES);
  403. hydro_hash_update(&state->h_st, psk, hydro_kx_PSKBYTES);
  404. hydro_kx_eph_keygen(state, &state->eph_kp);
  405. if (hydro_kx_dh(state, state->eph_kp.sk, peer_static_pk) != 0) {
  406. return -1;
  407. }
  408. hydro_kx_aead_encrypt(state, packet1_mac, NULL, 0);
  409. memcpy(packet1_eph_pk, state->eph_kp.pk, sizeof state->eph_kp.pk);
  410. return 0;
  411. }
  412. int
  413. hydro_kx_nk_2(hydro_kx_session_keypair *kp, uint8_t packet2[hydro_kx_NK_PACKET2BYTES],
  414. const uint8_t packet1[hydro_kx_NK_PACKET1BYTES], const uint8_t psk[hydro_kx_PSKBYTES],
  415. const hydro_kx_keypair *static_kp)
  416. {
  417. hydro_kx_state state;
  418. const uint8_t *peer_eph_pk = &packet1[0];
  419. const uint8_t *packet1_mac = &packet1[hydro_kx_PUBLICKEYBYTES];
  420. uint8_t * packet2_eph_pk = &packet2[0];
  421. uint8_t * packet2_mac = &packet2[hydro_kx_PUBLICKEYBYTES];
  422. if (psk == NULL) {
  423. psk = zero;
  424. }
  425. hydro_kx_init_state(&state, "Noise_NKpsk0_hydro1");
  426. hydro_hash_update(&state.h_st, static_kp->pk, hydro_kx_PUBLICKEYBYTES);
  427. hydro_hash_update(&state.h_st, psk, hydro_kx_PSKBYTES);
  428. hydro_hash_update(&state.h_st, peer_eph_pk, hydro_x25519_PUBLICKEYBYTES);
  429. if (hydro_kx_dh(&state, static_kp->sk, peer_eph_pk) != 0 ||
  430. hydro_kx_aead_decrypt(&state, NULL, packet1_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  431. return -1;
  432. }
  433. hydro_kx_eph_keygen(&state, &state.eph_kp);
  434. if (hydro_kx_dh(&state, state.eph_kp.sk, peer_eph_pk) != 0) {
  435. return -1;
  436. }
  437. hydro_kx_aead_encrypt(&state, packet2_mac, NULL, 0);
  438. hydro_kx_final(&state, kp->tx, kp->rx);
  439. memcpy(packet2_eph_pk, state.eph_kp.pk, sizeof state.eph_kp.pk);
  440. return 0;
  441. }
  442. int
  443. hydro_kx_nk_3(hydro_kx_state *state, hydro_kx_session_keypair *kp,
  444. const uint8_t packet2[hydro_kx_NK_PACKET2BYTES])
  445. {
  446. const uint8_t *peer_eph_pk = &packet2[0];
  447. const uint8_t *packet2_mac = &packet2[hydro_kx_PUBLICKEYBYTES];
  448. hydro_hash_update(&state->h_st, peer_eph_pk, hydro_x25519_PUBLICKEYBYTES);
  449. if (hydro_kx_dh(state, state->eph_kp.sk, peer_eph_pk) != 0 ||
  450. hydro_kx_aead_decrypt(state, NULL, packet2_mac, hydro_kx_AEAD_MACBYTES) != 0) {
  451. return -1;
  452. }
  453. hydro_kx_final(state, kp->rx, kp->tx);
  454. return 0;
  455. }