| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- #include "QuaternionTestsF32.h"
- #include <stdio.h>
- #include "Error.h"
- #define SNR_THRESHOLD 120
- /*
- Reference patterns are generated with
- a double precision computation.
- */
- #define REL_ERROR (1.0e-6)
- #define ABS_ERROR (1.0e-7)
- void QuaternionTestsF32::test_quaternion_norm_f32()
- {
- const float32_t *inp1=input1.ptr();
- float32_t *outp=output.ptr();
- arm_quaternion_norm_f32(inp1,outp,output.nbSamples());
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
- void QuaternionTestsF32::test_quaternion_inverse_f32()
- {
- const float32_t *inp1=input1.ptr();
- float32_t *outp=output.ptr();
- arm_quaternion_inverse_f32(inp1,outp,input1.nbSamples() >> 2);
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
- void QuaternionTestsF32::test_quaternion_conjugate_f32()
- {
- const float32_t *inp1=input1.ptr();
- float32_t *outp=output.ptr();
- arm_quaternion_conjugate_f32(inp1,outp,input1.nbSamples() >> 2);
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
- void QuaternionTestsF32::test_quaternion_normalize_f32()
- {
- const float32_t *inp1=input1.ptr();
- float32_t *outp=output.ptr();
- arm_quaternion_normalize_f32(inp1,outp,input1.nbSamples() >> 2);
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
- void QuaternionTestsF32::test_quaternion_prod_single_f32()
- {
- const float32_t *inp1=input1.ptr();
- const float32_t *inp2=input2.ptr();
- float32_t *outp=output.ptr();
- for(uint32_t i=0; i < input1.nbSamples() >> 2; i++)
- {
- arm_quaternion_product_single_f32(inp1,inp2,outp);
- outp += 4;
- inp1 += 4;
- inp2 += 4;
- }
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
- void QuaternionTestsF32::test_quaternion_product_f32()
- {
- const float32_t *inp1=input1.ptr();
- const float32_t *inp2=input2.ptr();
- float32_t *outp=output.ptr();
- arm_quaternion_product_f32(inp1,inp2,outp,input1.nbSamples() >> 2);
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
- void QuaternionTestsF32::test_quaternion2rotation_f32()
- {
- const float32_t *inp1=input1.ptr();
- float32_t *outp=output.ptr();
- arm_quaternion2rotation_f32(inp1,outp,input1.nbSamples() >> 2);
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
- void QuaternionTestsF32::test_rotation2quaternion_f32()
- {
- const float32_t *inp1=input1.ptr();
- float32_t *outp=output.ptr();
- /*
- q and -q are representing the same rotation.
- To remove the ambiguity we force the real part ot be positive.
- Same convention followed in Python script.
- */
- arm_rotation2quaternion_f32(inp1,outp,output.nbSamples() >> 2);
- /* Remove ambiguity */
- for(uint32_t i=0; i < output.nbSamples() >> 2 ; i++)
- {
- if (outp[0] < 0.0f)
- {
- outp[0] = -outp[0];
- outp[1] = -outp[1];
- outp[2] = -outp[2];
- outp[3] = -outp[3];
- }
- outp += 4;
- }
- ASSERT_EMPTY_TAIL(output);
- ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
- ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
- }
-
- void QuaternionTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
- {
-
- (void)params;
- Testing::nbSamples_t nb=MAX_NB_SAMPLES;
-
- switch(id)
- {
- case QuaternionTestsF32::TEST_QUATERNION_NORM_F32_1:
- input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_NORM_F32_ID,mgr,nb);
- break;
- case QuaternionTestsF32::TEST_QUATERNION_INVERSE_F32_2:
- input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_INVERSE_F32_ID,mgr,nb);
- break;
- case QuaternionTestsF32::TEST_QUATERNION_CONJUGATE_F32_3:
- input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_CONJUGATE_F32_ID,mgr,nb);
- break;
- case QuaternionTestsF32::TEST_QUATERNION_NORMALIZE_F32_4:
- input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_NORMALIZE_F32_ID,mgr,nb);
- break;
- case QuaternionTestsF32::TEST_QUATERNION_PROD_SINGLE_F32_5:
- input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
- input2.reload(QuaternionTestsF32::INPUT2_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_MULT_F32_ID,mgr,nb);
- break;
- case QuaternionTestsF32::TEST_QUATERNION_PRODUCT_F32_6:
- input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
- input2.reload(QuaternionTestsF32::INPUT2_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_MULT_F32_ID,mgr,nb);
- break;
- case QuaternionTestsF32::TEST_QUATERNION2ROTATION_F32_7:
- input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_QUAT2ROT_F32_ID,mgr,nb);
- break;
- case QuaternionTestsF32::TEST_ROTATION2QUATERNION_F32_8:
- input1.reload(QuaternionTestsF32::INPUT7_F32_ID,mgr,nb);
- ref.reload(QuaternionTestsF32::REF_ROT2QUAT_F32_ID,mgr,nb);
- break;
- }
-
-
- output.create(ref.nbSamples(),QuaternionTestsF32::OUT_SAMPLES_F32_ID,mgr);
- }
- void QuaternionTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
- {
- (void)id;
- output.dump(mgr);
- }
|