QuaternionTestsF32.cpp 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. #include "QuaternionTestsF32.h"
  2. #include <stdio.h>
  3. #include "Error.h"
  4. #define SNR_THRESHOLD 120
  5. /*
  6. Reference patterns are generated with
  7. a double precision computation.
  8. */
  9. #define REL_ERROR (1.0e-6)
  10. #define ABS_ERROR (1.0e-7)
  11. void QuaternionTestsF32::test_quaternion_norm_f32()
  12. {
  13. const float32_t *inp1=input1.ptr();
  14. float32_t *outp=output.ptr();
  15. arm_quaternion_norm_f32(inp1,outp,output.nbSamples());
  16. ASSERT_EMPTY_TAIL(output);
  17. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  18. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  19. }
  20. void QuaternionTestsF32::test_quaternion_inverse_f32()
  21. {
  22. const float32_t *inp1=input1.ptr();
  23. float32_t *outp=output.ptr();
  24. arm_quaternion_inverse_f32(inp1,outp,input1.nbSamples() >> 2);
  25. ASSERT_EMPTY_TAIL(output);
  26. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  27. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  28. }
  29. void QuaternionTestsF32::test_quaternion_conjugate_f32()
  30. {
  31. const float32_t *inp1=input1.ptr();
  32. float32_t *outp=output.ptr();
  33. arm_quaternion_conjugate_f32(inp1,outp,input1.nbSamples() >> 2);
  34. ASSERT_EMPTY_TAIL(output);
  35. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  36. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  37. }
  38. void QuaternionTestsF32::test_quaternion_normalize_f32()
  39. {
  40. const float32_t *inp1=input1.ptr();
  41. float32_t *outp=output.ptr();
  42. arm_quaternion_normalize_f32(inp1,outp,input1.nbSamples() >> 2);
  43. ASSERT_EMPTY_TAIL(output);
  44. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  45. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  46. }
  47. void QuaternionTestsF32::test_quaternion_prod_single_f32()
  48. {
  49. const float32_t *inp1=input1.ptr();
  50. const float32_t *inp2=input2.ptr();
  51. float32_t *outp=output.ptr();
  52. for(uint32_t i=0; i < input1.nbSamples() >> 2; i++)
  53. {
  54. arm_quaternion_product_single_f32(inp1,inp2,outp);
  55. outp += 4;
  56. inp1 += 4;
  57. inp2 += 4;
  58. }
  59. ASSERT_EMPTY_TAIL(output);
  60. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  61. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  62. }
  63. void QuaternionTestsF32::test_quaternion_product_f32()
  64. {
  65. const float32_t *inp1=input1.ptr();
  66. const float32_t *inp2=input2.ptr();
  67. float32_t *outp=output.ptr();
  68. arm_quaternion_product_f32(inp1,inp2,outp,input1.nbSamples() >> 2);
  69. ASSERT_EMPTY_TAIL(output);
  70. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  71. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  72. }
  73. void QuaternionTestsF32::test_quaternion2rotation_f32()
  74. {
  75. const float32_t *inp1=input1.ptr();
  76. float32_t *outp=output.ptr();
  77. arm_quaternion2rotation_f32(inp1,outp,input1.nbSamples() >> 2);
  78. ASSERT_EMPTY_TAIL(output);
  79. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  80. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  81. }
  82. void QuaternionTestsF32::test_rotation2quaternion_f32()
  83. {
  84. const float32_t *inp1=input1.ptr();
  85. float32_t *outp=output.ptr();
  86. /*
  87. q and -q are representing the same rotation.
  88. To remove the ambiguity we force the real part ot be positive.
  89. Same convention followed in Python script.
  90. */
  91. arm_rotation2quaternion_f32(inp1,outp,output.nbSamples() >> 2);
  92. /* Remove ambiguity */
  93. for(uint32_t i=0; i < output.nbSamples() >> 2 ; i++)
  94. {
  95. if (outp[0] < 0.0f)
  96. {
  97. outp[0] = -outp[0];
  98. outp[1] = -outp[1];
  99. outp[2] = -outp[2];
  100. outp[3] = -outp[3];
  101. }
  102. outp += 4;
  103. }
  104. ASSERT_EMPTY_TAIL(output);
  105. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  106. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  107. }
  108. void QuaternionTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  109. {
  110. (void)params;
  111. Testing::nbSamples_t nb=MAX_NB_SAMPLES;
  112. switch(id)
  113. {
  114. case QuaternionTestsF32::TEST_QUATERNION_NORM_F32_1:
  115. input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
  116. ref.reload(QuaternionTestsF32::REF_NORM_F32_ID,mgr,nb);
  117. break;
  118. case QuaternionTestsF32::TEST_QUATERNION_INVERSE_F32_2:
  119. input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
  120. ref.reload(QuaternionTestsF32::REF_INVERSE_F32_ID,mgr,nb);
  121. break;
  122. case QuaternionTestsF32::TEST_QUATERNION_CONJUGATE_F32_3:
  123. input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
  124. ref.reload(QuaternionTestsF32::REF_CONJUGATE_F32_ID,mgr,nb);
  125. break;
  126. case QuaternionTestsF32::TEST_QUATERNION_NORMALIZE_F32_4:
  127. input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
  128. ref.reload(QuaternionTestsF32::REF_NORMALIZE_F32_ID,mgr,nb);
  129. break;
  130. case QuaternionTestsF32::TEST_QUATERNION_PROD_SINGLE_F32_5:
  131. input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
  132. input2.reload(QuaternionTestsF32::INPUT2_F32_ID,mgr,nb);
  133. ref.reload(QuaternionTestsF32::REF_MULT_F32_ID,mgr,nb);
  134. break;
  135. case QuaternionTestsF32::TEST_QUATERNION_PRODUCT_F32_6:
  136. input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
  137. input2.reload(QuaternionTestsF32::INPUT2_F32_ID,mgr,nb);
  138. ref.reload(QuaternionTestsF32::REF_MULT_F32_ID,mgr,nb);
  139. break;
  140. case QuaternionTestsF32::TEST_QUATERNION2ROTATION_F32_7:
  141. input1.reload(QuaternionTestsF32::INPUT1_F32_ID,mgr,nb);
  142. ref.reload(QuaternionTestsF32::REF_QUAT2ROT_F32_ID,mgr,nb);
  143. break;
  144. case QuaternionTestsF32::TEST_ROTATION2QUATERNION_F32_8:
  145. input1.reload(QuaternionTestsF32::INPUT7_F32_ID,mgr,nb);
  146. ref.reload(QuaternionTestsF32::REF_ROT2QUAT_F32_ID,mgr,nb);
  147. break;
  148. }
  149. output.create(ref.nbSamples(),QuaternionTestsF32::OUT_SAMPLES_F32_ID,mgr);
  150. }
  151. void QuaternionTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  152. {
  153. (void)id;
  154. output.dump(mgr);
  155. }