| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- template <typename T, typename Op, int N = 5>
- void MaximumMinimumBroadcastSlow(const RuntimeShape& unextended_input1_shape,
- const T* input1_data,
- const RuntimeShape& unextended_input2_shape,
- const T* input2_data,
- const RuntimeShape& unextended_output_shape,
- T* output_data, Op op) {
- // Uses element-wise calculation if broadcast is not required.
- if (unextended_input1_shape == unextended_input2_shape) {
- const int flat_size =
- MatchingElementsSize(unextended_input1_shape, unextended_input2_shape,
- unextended_output_shape);
- for (int i = 0; i < flat_size; ++i) {
- output_data[i] = op(input1_data[i], input2_data[i]);
- }
- } else {
- TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
- NdArrayDesc<N> desc1;
- NdArrayDesc<N> desc2;
- NdArrayDesc<N> output_desc;
- NdArrayDescsForElementwiseBroadcast(
- unextended_input1_shape, unextended_input2_shape, &desc1, &desc2);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
- &output_desc);
- auto maxmin_func = [&](int indexes[N]) {
- output_data[SubscriptToIndex(output_desc, indexes)] =
- op(input1_data[SubscriptToIndex(desc1, indexes)],
- input2_data[SubscriptToIndex(desc2, indexes)]);
- };
- NDOpsHelper<N>(output_desc, maxmin_func);
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_
|