| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace maximum_minimum {
- namespace {
- // This file has a reference implementation of TFMaximum/TFMinimum.
- enum KernelType {
- kReference,
- };
- constexpr int kInputTensor1 = 0;
- constexpr int kInputTensor2 = 1;
- constexpr int kOutputTensor = 0;
- struct OpContext {
- OpContext(TfLiteContext* context, TfLiteNode* node) {
- input1 = tflite::micro::GetEvalInput(context, node, kInputTensor1);
- input2 = tflite::micro::GetEvalInput(context, node, kInputTensor2);
- output = tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- }
- const TfLiteEvalTensor* input1;
- const TfLiteEvalTensor* input2;
- TfLiteEvalTensor* output;
- };
- struct MaximumOp {
- template <typename data_type>
- static data_type op(data_type el1, data_type el2) {
- return el1 > el2 ? el1 : el2;
- }
- };
- struct MinimumOp {
- template <typename data_type>
- static data_type op(data_type el1, data_type el2) {
- return el1 < el2 ? el1 : el2;
- }
- };
- } // namespace
- template <typename data_type, typename op_type>
- void TFLiteOperation(TfLiteContext* context, TfLiteNode* node,
- const OpContext& op_context) {
- reference_ops::MaximumMinimumBroadcastSlow(
- tflite::micro::GetTensorShape(op_context.input1),
- tflite::micro::GetTensorData<data_type>(op_context.input1),
- tflite::micro::GetTensorShape(op_context.input2),
- tflite::micro::GetTensorData<data_type>(op_context.input2),
- tflite::micro::GetTensorShape(op_context.output),
- tflite::micro::GetTensorData<data_type>(op_context.output),
- op_type::template op<data_type>);
- }
- template <KernelType kernel_type, typename OpType>
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- OpContext op_context(context, node);
- if (kernel_type == kReference) {
- switch (op_context.output->type) {
- case kTfLiteFloat32:
- TFLiteOperation<float, OpType>(context, node, op_context);
- break;
- case kTfLiteUInt8:
- TFLiteOperation<uint8_t, OpType>(context, node, op_context);
- break;
- case kTfLiteInt8:
- TFLiteOperation<int8_t, OpType>(context, node, op_context);
- break;
- case kTfLiteInt32:
- TFLiteOperation<int32_t, OpType>(context, node, op_context);
- break;
- case kTfLiteInt64:
- TFLiteOperation<int64_t, OpType>(context, node, op_context);
- break;
- default:
- TF_LITE_KERNEL_LOG(context,
- "Type %s (%d) is not supported by Maximum/Minimum.",
- TfLiteTypeGetName(op_context.output->type),
- op_context.output->type);
- return kTfLiteError;
- }
- } else {
- TF_LITE_KERNEL_LOG(context,
- "Kernel type not supported by Maximum/Minimum.");
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace maximum_minimum
- TfLiteRegistration Register_MAXIMUM() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/
- maximum_minimum::Eval<maximum_minimum::kReference,
- maximum_minimum::MaximumOp>,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- TfLiteRegistration Register_MINIMUM() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/
- maximum_minimum::Eval<maximum_minimum::kReference,
- maximum_minimum::MinimumOp>,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|