Armando 1f8f0a5285 feat(cache): added private API to get cache alignment requirements 2 ani în urmă
..
esp32 1f8f0a5285 feat(cache): added private API to get cache alignment requirements 2 ani în urmă
esp32c2 f92b18053a Merge branch 'feature/esp32p4_hp_spi_support' into 'master' 2 ani în urmă
esp32c3 f92b18053a Merge branch 'feature/esp32p4_hp_spi_support' into 'master' 2 ani în urmă
esp32c6 f92b18053a Merge branch 'feature/esp32p4_hp_spi_support' into 'master' 2 ani în urmă
esp32h2 f92b18053a Merge branch 'feature/esp32p4_hp_spi_support' into 'master' 2 ani în urmă
esp32p4 f92b18053a Merge branch 'feature/esp32p4_hp_spi_support' into 'master' 2 ani în urmă
esp32s2 f92b18053a Merge branch 'feature/esp32p4_hp_spi_support' into 'master' 2 ani în urmă
esp32s3 f92b18053a Merge branch 'feature/esp32p4_hp_spi_support' into 'master' 2 ani în urmă
include 1f8f0a5285 feat(cache): added private API to get cache alignment requirements 2 ani în urmă
platform_port 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
test 8c6ddb776c fix: remove wno format in hal component 2 ani în urmă
test_apps dd4072a80c refactor(hal): use hal utils to calculate clock division 2 ani în urmă
.build-test-rules.yml dd4072a80c refactor(hal): use hal utils to calculate clock division 2 ani în urmă
CMakeLists.txt cdc905ffe0 feat(dw_gdma): initial low level driver 2 ani în urmă
Kconfig 15e8c04f7b spi: change linker file let spi hal able to out from iram 2 ani în urmă
README.md 54febcae0e fix(adc): invalid assertion on the adc_unit 2 ani în urmă
adc_hal.c dd4072a80c refactor(hal): use hal utils to calculate clock division 2 ani în urmă
adc_hal_common.c ffb40a89d9 adc_cali: supported channel compensation of adc calibration on esp32c6 2 ani în urmă
adc_oneshot_hal.c 8c6ddb776c fix: remove wno format in hal component 2 ani în urmă
aes_hal.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
apm_hal.c 8d0f6dab0f apm: added support for APM on esp32c6 2 ani în urmă
brownout_hal.c a3d962d89a brownout: Disable the hardware BOD when BOD interrupt is enabled 2 ani în urmă
cache_hal.c 1f8f0a5285 feat(cache): added private API to get cache alignment requirements 2 ani în urmă
ds_hal.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
dw_gdma_hal.c cdc905ffe0 feat(dw_gdma): initial low level driver 2 ani în urmă
ecc_hal.c a485b1cb67 esp32h2: Add support for ECC hardware accelerator 2 ani în urmă
ecdsa_hal.c d86b320892 feat(ecdsa): add ECDSA peripheral support for esp32p4 2 ani în urmă
efuse_hal.c ffb40a89d9 adc_cali: supported channel compensation of adc calibration on esp32c6 2 ani în urmă
emac_hal.c 88600bd91b driver: minor code clean up to pass coverity scan test 2 ani în urmă
etm_hal.c fb26d0e11f etm: added etm channel allocator 3 ani în urmă
gdma_hal_ahb_v1.c cdc905ffe0 feat(dw_gdma): initial low level driver 2 ani în urmă
gdma_hal_ahb_v2.c cdc905ffe0 feat(dw_gdma): initial low level driver 2 ani în urmă
gdma_hal_axi.c cdc905ffe0 feat(dw_gdma): initial low level driver 2 ani în urmă
gdma_hal_crc_gen.c 200eb866dc feat(gdma): support hardware crc calculation 2 ani în urmă
gdma_hal_top.c 200eb866dc feat(gdma): support hardware crc calculation 2 ani în urmă
gpio_hal.c be9afeac86 feat(gpio): add support for ESP32P4 2 ani în urmă
hal_utils.c dd4072a80c refactor(hal): use hal utils to calculate clock division 2 ani în urmă
hmac_hal.c 1c233cc508 hmac_hal: Merge hmac hal layer for different into one 3 ani în urmă
i2c_hal.c de85f47bc9 feat(i2c): Add I2C driver support for esp32p4 2 ani în urmă
i2c_hal_iram.c 4ef94fc0dc feat(i2c): Add new API and implementation for I2C driver 2 ani în urmă
i2s_hal.c c018dc9d77 refactor(hal): avoid float type in hal 2 ani în urmă
lcd_hal.c dd4072a80c refactor(hal): use hal utils to calculate clock division 2 ani în urmă
ledc_hal.c fcc6514dde ledc: Add an all-in-one HAL function to set fade parameters, and refactor ledc_ll_get_max_duty function 2 ani în urmă
ledc_hal_iram.c fcc6514dde ledc: Add an all-in-one HAL function to set fade parameters, and refactor ledc_ll_get_max_duty function 2 ani în urmă
linker.lf 66821f699c refactor(ledc): move related kconfig and linker.lf to its own folder 2 ani în urmă
lp_timer_hal.c 01fb28b65b Power Management: move lp_timer_hal.c to upper hal layer for esp32h2 and esp32c6 2 ani în urmă
mcpwm_hal.c f7ff7ac4d0 mcpwm: clean up hal driver and add doc 3 ani în urmă
mmu_hal.c ea38a2e9a4 feat(cache): support cache driver on esp32p4 2 ani în urmă
mpi_hal.c 4ae1ea7b9f bignum: refactored the hardware abstraction of the mpi peripheral 2 ani în urmă
mpu_hal.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
parlio_hal.c 28a45e20b8 feat(parlio_tx): supported parlio tx on p4 2 ani în urmă
pcnt_hal.c ec8defaa96 pulse_cnt: new driver for PCNT peripheral 3 ani în urmă
rmt_hal.c 6bb05cccdd feat(rmt): add driver support for esp32p4 2 ani în urmă
rtc_io_hal.c 2d458a3f93 feat(lp_io): Add support for ESP32P4 2 ani în urmă
sdio_slave_hal.c 8c6ddb776c fix: remove wno format in hal component 2 ani în urmă
sdkconfig.rename e18f381905 HAL: fix kconfig HAL_ASSERTION typo 3 ani în urmă
sdm_hal.c 4154eaec93 sdm: clean up soc/hal/ll code 3 ani în urmă
sha_hal.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
spi_flash_encrypt_hal_iram.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
spi_flash_hal.c ed96dadd06 spi_flash: 2nd stage for supporting flash suspend. (1). Support more esp chips (2). Improve real-time performance (3). Making timing more stable (4) Add documents 2 ani în urmă
spi_flash_hal_common.inc c147a6d022 fix(spi_flash): Fix spi_flash write fail on 26M C2(including OTA fail on this chip) 2 ani în urmă
spi_flash_hal_gpspi.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
spi_flash_hal_iram.c ed96dadd06 spi_flash: 2nd stage for supporting flash suspend. (1). Support more esp chips (2). Improve real-time performance (3). Making timing more stable (4) Add documents 2 ani în urmă
spi_hal.c 00fcdce725 feat(spi_master): p4 add master driver supported 2 ani în urmă
spi_hal_iram.c 00fcdce725 feat(spi_master): p4 add master driver supported 2 ani în urmă
spi_slave_hal.c 00fcdce725 feat(spi_master): p4 add master driver supported 2 ani în urmă
spi_slave_hal_iram.c 00fcdce725 feat(spi_master): p4 add master driver supported 2 ani în urmă
spi_slave_hd_hal.c 56a376c696 feat(esp_gdma): add hal interface for common operations 2 ani în urmă
systimer_hal.c cbdb799b6f feat(esp_timer): Support systimer for ESP32P4 2 ani în urmă
timer_hal.c 7638235311 feat(mcpwm): MCPWM event comparator driver 2 ani în urmă
touch_sensor_hal.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
twai_hal.c 72becf31e4 twai: Add errata workaround for listen only mode 2 ani în urmă
twai_hal_iram.c a25123f703 twai: bringup on esp32c6 3 ani în urmă
uart_hal.c 4541ad134d feat(uart): add RCC atomic block to uart/lp-uart peripheral 2 ani în urmă
uart_hal_iram.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
usb_dwc_hal.c 7d386f68df usb_host: Restrict ESP32-S2 AHB errata workaround to only ECO0 chips 2 ani în urmă
usb_hal.c 333553caf2 fix(hal): check the public header files and fix violations 2 ani în urmă
usb_phy_hal.c 1fcd639224 usb: Add usb_phy driver to support operations on USB PHY 4 ani în urmă
wdt_hal_iram.c 9c37441b17 wdt: refactor wdt codes to use unified type 2 ani în urmă
xt_wdt_hal.c 4869b3cd4a WDT: Add support for XTAL32K Watchdog timer 4 ani în urmă

README.md

hal (G0 component)

⚠️ The HAL component is still under heavy development at the moment, so we don't guarantee the stability and backward-compatibility among versions.

The hal component provides a Hardware Abstraction Layer for all targets supported by ESP-IDF. It is designed to be a G0 component so that it can be used by other components like driver, esp_hw_support, esp_system and so on.

In a broad sense, the HAL layer consists of two sub-layers: HAL (upper) and Low-Level(bottom). The HAL layer defines the steps and data that is required to operate a peripheral (e.g. initialization, start and stop). The low-level is a translation layer above the register files under the soc component, it only covers general conceptions to register configurations.

Low-Level (hal/<periph>_ll.h)

Functions defined in the file must be static inlined. The first argument of an LL function is usually a pointer to the peripheral's base address [^1]. At the moment, each ESP target has its own set of Low-Level drivers. They're located under path e.g. components/hal/<target>/include/hal/<periph>_ll.h. We wish the the low-level functions could be as independent as possible, so that the caller doesn't need to worry about conflict between different sub-modules. For example, when resetting the driver of module A, the module B is also reset by accident. However, the digital design is not perfect, coupling happens from time to time.

Handling Shared Registers

One of the biggest coupling is the so-called "hardware shared resource". Take the common Reset and Clock Control part as an example, the clock enable and disable logic of different peripherals are mixing in the same register. In RTOS environment, it's super easy to make a mistake when you enable peripheral A and then peripheral B is disabled by accident. A simple way to avoid such mistake is to using a critical section when accessing such shared registers. However from the point of the software architecture, it's not a good idea to add a lock in the Low-Level because it's a concept of the operating system.

One compromise is to highlight the LL function which needs the caller to use them in a critical section. e.g.

/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_RC_ATOMIC_ENV variable in advance
#define timer_ll_reset_register(...) (void)__DECLARE_RCC_RC_ATOMIC_ENV; timer_ll_reset_register(__VA_ARGS__)

/// use a macro to wrap the function, force the caller to use it in a critical section
/// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance
#define timer_ll_set_clock_source(...) (void)__DECLARE_RCC_ATOMIC_ENV; timer_ll_set_clock_source(__VA_ARGS__)

By referencing a variable which is only declared in the critical section, the compiler will report an error if the caller forgets to use the critical section. The following macros are provided by esp_private/periph_ctrl.h, which contain the above magic variables.

You should use this critical section if the peripheral module has multiple independent sub-modules. You should use this critical section if the peripheral module has multiple independent sub-modules.
Macro Private variables used to declare a critical section Use condition
PERIPH_RCC_ACQUIRE_ATOMIC __DECLARE_RCC_RC_ATOMIC_ENV This critical section not only protects the shared register accessing, but also increases a reference counter of the peripheral module.
PERIPH_RCC_RELEASE_ATOMIC __DECLARE_RCC_RC_ATOMIC_ENV This critical section not only protects the shared register accessing, but also decreases a reference counter of the peripheral module.
PERIPH_RCC_ATOMIC __DECLARE_RCC_ATOMIC_ENV This critical section only protects the shared register accessing.

ESP-IDF driver developers then can use the above macros to call the special LL functions. e.g.

static void enable_timer_group0_for_calibration(void)
{
    PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
        if (ref_count == 0) {
            timer_ll_enable_bus_clock(0, true);
            timer_ll_reset_register(0);
        }
    }
}

HAL (hal/<periph>_hal.h)

This layer is a combination of Low-Level function calls, aiming to ease the load when porting a new chip to other platforms (e.g. Zephyr). This layer shouldn't rely on Operating System, i.e., don't use primitives that only offered by an Operating System, e.g., the lock and other blocking functions. Please don't introduce any driver models in the HAL layer so that the non-idf developers can customized their own drivers according to their platform requirement.

The first argument of a HAL function is usually a pointer to the context object. The context object is a structure which saves the necessary information that is used by the HAL driver (e.g. the base address of the peripheral). ⚡ Please note, the memory used by the HAL context object is allocated by the caller, so the HAL driver shouldn't free it.

File Structure

include/hal

/include/hal contains header files which provides a hardware-agnostic interface to the SoC. The interface consists of function declarations and abstracted types that other, higher level components can make use of in order to have code portable to all targets ESP-IDF supports.

It contains an abstraction layer for interacting with/driving the hardware found in the SoC such as the peripherals and 'core' hardware such as the CPU, MPU, caches, etc. It contains for the abstracted types. The abstraction design is actually two levels -- often sometimes xxx_hal.h includes a lower-level header from a xxx_ll.h, which resides in the implementation.

target/include

Provides the implementation of the hardware-agnostic interface in the abstraction. Target-specific subdirectories exist for wildly different implementations among targets; while code that are common/very similar might be placed in the top-level of /<target>/include, using some amount of conditional preprocessor. It is up to the developers' discretion on which strategy to use. Code usually reside in source files with same names to header files whose interfaces they implement, ex. xxx_hal.c for xxx_hal.h.

As mentioned previously, the lower-level abstraction header xxx_ll.h resides in this directory, since they contain hardware-specific details. However, what these can do is provide some abstraction among implementations, so that more code can be moved to the common, non-target-specific subdirectories.

This can also contain target-specific extensions to the HAL headers. These target-specific HAL headers have the same name and include the abstraction layer HAL header via include_next. These extensions might add more function declarations or override some things using macro magic.

[^1]: This is not a must. Sometimes if the LL is just operating some system level registers, you don't have to provide this argument.